meiotic drive
Recently Published Documents


TOTAL DOCUMENTS

384
(FIVE YEARS 54)

H-INDEX

40
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Beatriz Navarro-Dominguez ◽  
Ching-Ho Chang ◽  
Cara Brand ◽  
Christina Muirhead ◽  
Daven Presgraves ◽  
...  

Meiotic drive supergenes are complexes of alleles at linked loci that together subvert Mendelian segregation to gain preferential transmission. In males, the most common mechanism of drive involves the disruption of sperm bearing alternative alleles. While at least two loci are important for male drive- the driver and the target- linked modifiers can enhance drive, creating selection pressure to suppress recombination. In this work, we investigate the evolution and genomic consequences of an autosomal multilocus, male meiotic drive system, Segregation Distorter (SD) in the fruit fly, Drosophila melanogaster. In African populations, the predominant SD chromosome variant, SD-Mal, is characterized by two overlapping, paracentric inversion on chromosome arm 2R and nearly perfect (~100%) transmission. We study the SD-Mal system in detail, exploring its components, chromosomal structure, and evolutionary history. Our findings reveal a recent chromosome-scale selective sweep mediated by strong epistatic selection for haplotypes carrying Sd, the main driving allele, and one or more factors within the double inversion. While most SD-Mal chromosomes are homozygous lethal, SD-Mal haplotypes can recombine with other, complementing haplotypes via crossing over and with wildtype chromosomes only via gene conversion. SD-Mal chromosomes have nevertheless accumulated lethal mutations, excess non-synonymous mutations, and excess transposable element insertions. Therefore, SD-Mal haplotypes evolve as a small, semi-isolated subpopulation with a history of strong selection. These results may explain the evolutionary turnover of SD haplotypes in different populations around the world and have implications for supergene evolution broadly.


2021 ◽  
Vol 12 ◽  
Author(s):  
Martina Johnson Pokorná ◽  
Radka Reifová

B chromosomes represent additional chromosomes found in many eukaryotic organisms. Their origin is not completely understood but recent genomic studies suggest that they mostly arise through rearrangements and duplications from standard chromosomes. They can occur in single or multiple copies in a cell and are usually present only in a subset of individuals in the population. Because B chromosomes frequently show unstable inheritance, their maintenance in a population is often associated with meiotic drive or other mechanisms that increase the probability of their transmission to the next generation. For all these reasons, B chromosomes have been commonly considered to be nonessential, selfish, parasitic elements. Although it was originally believed that B chromosomes had little or no effect on an organism’s biology and fitness, a growing number of studies have shown that B chromosomes can play a significant role in processes such as sex determination, pathogenicity and resistance to pathogens. In some cases, B chromosomes became an essential part of the genome, turning into new sex chromosomes or germline-restricted chromosomes with important roles in the organism’s fertility. Here, we review such cases of “cellular domestication” of B chromosomes and show that B chromosomes can be important genomic players with significant evolutionary impact.


2021 ◽  
Vol 5 (12) ◽  
pp. 1613-1623 ◽  
Author(s):  
Jeffrey Vedanayagam ◽  
Ching-Jung Lin ◽  
Eric C. Lai

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ayda Mirsalehi ◽  
Dragomira N. Markova ◽  
Mohammadmehdi Eslamieh ◽  
Esther Betrán

Abstract Background The nuclear transport machinery is involved in a well-known male meiotic drive system in Drosophila. Fast gene evolution and gene duplications have been major underlying mechanisms in the evolution of meiotic drive systems, and this might include some nuclear transport genes in Drosophila. So, using a comprehensive, detailed phylogenomic study, we examined 51 insect genomes for the duplication of the same nuclear transport genes. Results We find that most of the nuclear transport duplications in Drosophila are of a few classes of nuclear transport genes, RNA mediated and fast evolving. We also retrieve many pseudogenes for the Ran gene. Some of the duplicates are relatively young and likely contributing to the turnover expected for genes under strong but changing selective pressures. These duplications are potentially revealing what features of nuclear transport are under selection. Unlike in flies, we find only a few duplications when we study the Drosophila duplicated nuclear transport genes in dipteran species outside of Drosophila, and none in other insects. Conclusions These findings strengthen the hypothesis that nuclear transport gene duplicates in Drosophila evolve either as drivers or suppressors of meiotic drive systems or as other male-specific adaptations circumscribed to flies and involving a handful of nuclear transport functions.


Author(s):  
Sarah Zanders ◽  
Hanna Johannesson

In this review, we examine the fungal spore killers. These are meiotic drive elements that cheat during sexual reproduction to increase their transmission into the next generation.


2021 ◽  
Author(s):  
Nicole L Nuckolls ◽  
Ananya Nidamangala Srinivasa ◽  
Anthony C Mok ◽  
María Angélica Bravo Núñez ◽  
Jeffrey J. Lange ◽  
...  

Meiotic drivers bias gametogenesis to ensure their transmission into more than half the offspring of a heterozygote. In Schizosaccharomyces pombe, wtf meiotic drivers destroy the meiotic products (spores) that do not inherit the driver from a heterozygote, thereby reducing fertility. wtf drivers encode both a Wtf poison protein and a Wtf antidote protein using alternative transcriptional start sites. Here, we analyze how the expression and localization of the Wtf proteins are regulated to achieve drive. We show that transcriptional timing and selective protein exclusion from developing spores ensure that all spores are exposed to Wtf4 poison, but only the spores that inherit wtf4 receive a dose of Wtf4 antidote sufficient for survival. In addition, we show that the Mei4 transcription factor, a master regulator of meiosis, controls the expression of the wtf4 poison transcript. This dual transcriptional regulation, which includes the use of a critical meiotic transcription factor, likely complicates the universal suppression of wtf genes without concomitantly disrupting spore viability. We propose that these features contribute to the evolutionary success of the wtf drivers.


Open Biology ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 210074
Author(s):  
Frances E. Clark ◽  
Takashi Akera

Female meiotic drive is the phenomenon where a selfish genetic element alters chromosome segregation during female meiosis to segregate to the egg and transmit to the next generation more frequently than Mendelian expectation. While several examples of female meiotic drive have been known for many decades, a molecular understanding of the underlying mechanisms has been elusive. Recent advances in this area in several model species prompts a comparative re-examination of these drive systems. In this review, we compare female meiotic drive of several animal and plant species, highlighting pertinent similarities.


2021 ◽  
Author(s):  
Isabelle M. Vea ◽  
Andrés G. de la Filia ◽  
Kamil S. Jaron ◽  
Andrew Joseph Mongue ◽  
Fransico J. Ruiz-Ruano ◽  
...  

Meiosis, the key process underlying sexual reproduction, is generally a fair process: each chromosome has a 50% chance of being included into each gamete. However in some organisms meiosis has become highly aberrant with some chromosomes having a higher chance of making it into gametes than others. Yet why and how such systems evolve remains unclear. Here we study the unusual reproductive genetics of mealybugs, in which only maternal-origin chromosomes are included into the gametes during male meiosis, while paternally-derived chromosomes degrade. This whole genome meiotic drive occurs in all males and is evolutionarily conserved. However one species - the obscure mealybug Pseudococcus viburni - has a segregating B chromosome that increases in frequency by escaping paternal genome elimination. Here we present whole-genome and gene expression data from laboratory lines with and without B chromosomes. These data allow us to identify B-linked sequences including >70 protein-coding genes as well as a B-specific satellite repeat that makes up a significant proportion of the chromosome. We also used these data to investigate the evolutionary origin of the B chromosome. The few paralogs between the B and the core genome are distributed throughout the genome, showing that it is unlikely that the B originated through a simple duplication of one of the autosomes. We also find that while many of the B-linked genes do not have paralogs within the P.viburni genome, but they do show orthology with genes in other hemipteran insects suggesting that the B might have originated from fission of one of the autosomes, possibly followed by further translocations of individual genes. Finally in order to understand the mechanisms by which the B is able to escape elimination when paternally-derived we generated gene expression data for males and females with and without B chromosomes. We find that at the developmental stage when meiosis is taking place only a small number of B-linked genes show significant expression. Only one gene was significantly over-expressed during male meiosis, which is when the drive occurs: a acetyltransferase involved in H3K56Ac, which has a putative role in meiosis and is therefore a promising candidate for further studies. Together, these results form a promising foundation for studying the mechanisms of meiotic drive in a system that is uniquely suited for this approach.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1338
Author(s):  
Filip Pajpach ◽  
Tianyu Wu ◽  
Linda Shearwin-Whyatt ◽  
Keith Jones ◽  
Frank Grützner

Segregation of chromosomes is a multistep process occurring both at mitosis and meiosis to ensure that daughter cells receive a complete set of genetic information. Critical components in the chromosome segregation include centromeres, kinetochores, components of sister chromatid and homologous chromosomes cohesion, microtubule organizing centres, and spindles. Based on the cytological work in the grasshopper Brachystola, it has been accepted for decades that segregation of homologs at meiosis is fundamentally random. This ensures that alleles on chromosomes have equal chance to be transmitted to progeny. At the same time mechanisms of meiotic drive and an increasing number of other examples of non-random segregation of autosomes and sex chromosomes provide insights into the underlying mechanisms of chromosome segregation but also question the textbook dogma of random chromosome segregation. Recent advances provide a better understanding of meiotic drive as a prominent force where cellular and chromosomal changes allow autosomes to bias their segregation. Less understood are mechanisms explaining observations that autosomal heteromorphism may cause biased segregation and regulate alternating segregation of multiple sex chromosome systems or translocation heterozygotes as an extreme case of non-random segregation. We speculate that molecular and cytological mechanisms of non-random segregation might be common in these cases and that there might be a continuous transition between random and non-random segregation which may play a role in the evolution of sexually antagonistic genes and sex chromosome evolution.


Sign in / Sign up

Export Citation Format

Share Document