scholarly journals Phase-based coordination of hippocampal and neocortical oscillations during human sleep

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Roy Cox ◽  
Theodor Rüber ◽  
Bernhard P. Staresina ◽  
Juergen Fell

AbstractDuring sleep, new memories undergo a gradual transfer from hippocampal (HPC) to neocortical (NC) sites. Precisely timed neural oscillations are thought to mediate this sleep-dependent memory consolidation, but exactly how sleep oscillations instantiate the HPC-NC dialog remains elusive. Employing overnight invasive electroencephalography in ten neurosurgical patients, we identified three broad classes of phase-based communication between HPC and lateral temporal NC. First, we observed interregional phase synchrony for non-rapid eye movement (NREM) spindles, and N2 and rapid eye movement (REM) theta activity. Second, we found asymmetrical N3 cross-frequency phase-amplitude coupling between HPC slow oscillations (SOs) and NC activity spanning the delta to high-gamma/ripple bands, but not in the opposite direction. Lastly, N2 theta and NREM spindle synchrony were themselves modulated by HPC SOs. These forms of interregional communication emphasize the role of HPC SOs in the HPC-NC dialog, and may offer a physiological basis for the sleep-dependent reorganization of mnemonic content.

2019 ◽  
Author(s):  
Roy Cox ◽  
Theodor Rüber ◽  
Bernhard P Staresina ◽  
Juergen Fell

AbstractDuring sleep, new memories undergo a gradual transfer from the hippocampus (HPC) to the neocortex (NC). Precisely timed neural oscillations interacting within and between these brain structures are thought to mediate this sleep-dependent memory consolidation, but exactly which sleep oscillations instantiate the HPC-NC dialog, and via what mechanisms, remains elusive. Employing invasive electroencephalography in ten neurosurgical patients across a full night of sleep, we identified three broad classes of phase-based HPC-NC communication. First, we observed interregional phase synchrony for non-rapid eye movement (NREM) spindles, N2 and rapid eye movement (REM) theta, and N3 beta activity. Second, and most intriguingly, we found asymmetrical N3 cross-frequency phase-amplitude coupling between HPC SOs and NC activity spanning the delta to high-gamma/ripple bands, but not in the opposite direction. Lastly, N2 theta and NREM spindle synchrony were themselves modulated by HPC SOs. These novel forms of phase-based interregional communication emphasize the role of HPC SOs in the HPC-NC dialog, and may offer a physiological basis for the sleep-dependent reorganization of mnemonic content.


Neuroforum ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Maryam Ghorbani ◽  
Lisa Marshall

AbstractSleep contributes actively to the consolidation of many forms of memory. This review describes the neural oscillations of non-rapid eye movement (NREM) sleep, the structures underlying these oscillations and their relation to hippocampus-dependent memory consolidation. A main focus lies on the relation between inter- and intraregional interactions and their electrophysiological representation. Methods for modulating neural oscillations with the intent of affecting memory consolidation are presented.


2002 ◽  
Vol 22 (24) ◽  
pp. 10941-10947 ◽  
Author(s):  
Matthias Mölle ◽  
Lisa Marshall ◽  
Steffen Gais ◽  
Jan Born

2021 ◽  
Author(s):  
Di Wang ◽  
Qingchen Guo ◽  
Yu Zhou ◽  
Zheng Xu ◽  
Su-Wan Hu ◽  
...  

Background The γ-aminobutyric acid–mediated (GABAergic) inhibitory system in the brain is critical for regulation of sleep–wake and general anesthesia. The lateral septum contains mainly GABAergic neurons, being cytoarchitectonically divided into the dorsal, intermediate, and ventral parts. This study hypothesized that GABAergic neurons of the lateral septum participate in the control of wakefulness and promote recovery from anesthesia. Methods By employing fiber photometry, chemogenetic and optogenetic neuronal manipulations, anterograde tracing, in vivo electrophysiology, and electroencephalogram/electromyography recordings in adult male mice, the authors measured the role of lateral septum GABAergic neurons to the control of sleep–wake transition and anesthesia emergence and the corresponding neuron circuits in arousal and emergence control. Results The GABAergic neurons of the lateral septum exhibited high activities during the awake state by in vivo fiber photometry recordings (awake vs. non–rapid eye movement sleep: 3.3 ± 1.4% vs. –1.3 ± 1.2%, P < 0.001, n = 7 mice/group; awake vs. anesthesia: 2.6 ± 1.2% vs. –1.3 ± 0.8%, P < 0.001, n = 7 mice/group). Using chemogenetic stimulation of lateral septum GABAergic neurons resulted in a 100.5% increase in wakefulness and a 51.2% reduction in non–rapid eye movement sleep. Optogenetic activation of these GABAergic neurons promoted wakefulness from sleep (median [25th, 75th percentiles]: 153.0 [115.9, 179.7] s to 4.0 [3.4, 4.6] s, P = 0.009, n = 5 mice/group) and accelerated emergence from isoflurane anesthesia (514.4 ± 122.2 s vs. 226.5 ± 53.3 s, P < 0.001, n = 8 mice/group). Furthermore, the authors demonstrated that the lateral septum GABAergic neurons send 70.7% (228 of 323 cells) of monosynaptic projections to the ventral tegmental area GABAergic neurons, preferentially inhibiting their activities and thus regulating wakefulness and isoflurane anesthesia depth. Conclusions The results uncover a fundamental role of the lateral septum GABAergic neurons and their circuit in maintaining awake state and promoting general anesthesia emergence time. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


SLEEP ◽  
2020 ◽  
Author(s):  
Jun-Sang Sunwoo ◽  
Kwang Su Cha ◽  
Jung-Ick Byun ◽  
Jin-Sun Jun ◽  
Tae-Joon Kim ◽  
...  

Abstract Study Objectives We investigated electroencephalographic (EEG) slow oscillations (SOs), sleep spindles (SSs), and their temporal coordination during nonrapid eye movement (NREM) sleep in patients with idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD). Methods We analyzed 16 patients with video-polysomnography-confirmed iRBD (age, 65.4 ± 6.6 years; male, 87.5%) and 10 controls (age, 62.3 ± 7.5 years; male, 70%). SSs and SOs were automatically detected during stage N2 and N3. We analyzed their characteristics, including density, frequency, duration, and amplitude. We additionally identified SO-locked spindles and examined their phase distribution and phase locking with the corresponding SO. For inter-group comparisons, we used the independent samples t-test or Wilcoxon rank-sum test, as appropriate. Results The SOs of iRBD patients had significantly lower amplitude, longer duration (p = 0.005 for both), and shallower slope (p < 0.001) than those of controls. The SS power of iRBD patients was significantly lower than that of controls (p = 0.002), although spindle density did not differ significantly. Furthermore, SO-locked spindles of iRBD patients prematurely occurred during the down-to-up-state transition of SOs, whereas those of controls occurred at the up-state peak of SOs (p = 0.009). The phase of SO-locked spindles showed a positive correlation with delayed recall subscores (p = 0.005) but not with tonic or phasic electromyography activity during REM sleep. Conclusions In this study, we found abnormal EEG oscillations during NREM sleep in patients with iRBD. The impaired temporal coupling between SOs and SSs may reflect early neurodegenerative changes in iRBD.


2020 ◽  
Vol 10 (6) ◽  
pp. 343 ◽  
Author(s):  
Serena Scarpelli ◽  
Aurora D’Atri ◽  
Chiara Bartolacci ◽  
Maurizio Gorgoni ◽  
Anastasia Mangiaruga ◽  
...  

Several findings support the activation hypothesis, positing that cortical arousal promotes dream recall (DR). However, most studies have been carried out on young participants, while the electrophysiological (EEG) correlates of DR in older people are still mostly unknown. We aimed to test the activation hypothesis on 20 elders, focusing on the Non-Rapid Eye Movement (NREM) sleep stage. All the subjects underwent polysomnography, and a dream report was collected upon their awakening from NREM sleep. Nine subjects were recallers (RECs) and 11 were non-RECs (NRECs). The delta and beta EEG activity of the last 5 min and the total NREM sleep was calculated by Fast Fourier Transform. Statistical comparisons (RECs vs. NRECs) revealed no differences in the last 5 min of sleep. Significant differences were found in the total NREM sleep: the RECs showed lower delta power over the parietal areas than the NRECs. Consistently, statistical comparisons on the activation index (delta/beta power) revealed that RECs showed a higher level of arousal in the fronto-temporal and parieto-occipital regions than NRECs. Both visual vividness and dream length are positively related to the level of activation. Overall, our results are consistent with the view that dreaming and the storage of oneiric contents depend on the level of arousal during sleep, highlighting a crucial role of the temporo-parietal-occipital zone.


Sign in / Sign up

Export Citation Format

Share Document