scholarly journals Teichoic acids anchor distinct cell wall lamellae in an apically growing bacterium

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Eveline Ultee ◽  
Lizah T. van der Aart ◽  
Le Zhang ◽  
Dino van Dissel ◽  
Christoph A. Diebolder ◽  
...  
2019 ◽  
Author(s):  
Eveline Ultee ◽  
Lizah T. van der Aart ◽  
Dino van Dissel ◽  
Christoph A. Diebolder ◽  
Gilles P. van Wezel ◽  
...  

AbstractThe bacterial cell wall is a dynamic, multicomponent structure that provides structural support for cell shape and physical protection from the environment. In monoderm species, the thick cell wall is made up predominantly of peptidoglycan, teichoic acids and a variety of capsular glycans. Filamentous monoderm Actinobacteria, such as Streptomyces coelicolor, incorporate new cell wall material at the apex of their hyphal cells during growth. In this study we use cryo-electron tomography to reveal the structural architecture of the cell wall of this bacterium. Our data shows a density difference between the apex and subapical regions of chemically isolated sacculi. Removal of the teichoic acids with hydrofluoric acid reveals a rough and patchy cell wall and distinct lamellae in a number of sacculi. Absence of the extracellular glycans poly-β-1,6-𝒩-acetylglucosamine and a cellulose-like polymer, produced by the MatAB and CslA proteins respectively, results in a thinner sacculus and absence of lamellae and patches. Extracellular glycans might thus form or lead to the formation of the outer cell wall lamella. Based on these findings we propose a revisited model for the complex cell wall architecture of an apically growing bacterium, in which the network of peptidoglycan together with extracellular polymers is structurally supported by teichoic acids.


Microbiology ◽  
2012 ◽  
Vol 81 (4) ◽  
pp. 425-434 ◽  
Author(s):  
G. M. Streshinskaya ◽  
A. S. Shashkov ◽  
Yu. I. Kozlova ◽  
E. M. Tul’skaya ◽  
E. B. Kudryashova ◽  
...  

2014 ◽  
Vol 106 (6) ◽  
pp. 1105-1117 ◽  
Author(s):  
Elena M. Tul’skaya ◽  
Alexander S. Shashkov ◽  
Galina M. Streshinskaya ◽  
Natalia V. Potekhina ◽  
Ludmila I. Evtushenko

2019 ◽  
Vol 4 (8) ◽  
pp. 1294-1305 ◽  
Author(s):  
Michael F. Dion ◽  
Mrinal Kapoor ◽  
Yingjie Sun ◽  
Sean Wilson ◽  
Joel Ryan ◽  
...  

1952 ◽  
Vol 30 (4) ◽  
pp. 371-378 ◽  
Author(s):  
J. W. Morrison ◽  
John Unrau

The frequency with which 20 different monosomes of the common wheat variety, Chinese Spring, formed micronuclei in pollen quartets was determined. It was found that unless the study was made at an early developmental stage characterized by a distinct cell wall surrounding the quartets, the counts were unreliable, because some micronuclei were lost. The frequency of micronucleus formation was similar for anthers of a floret, florets of a spike, and plants of a monosome. Among the monosomes studied, there were three groups of three and four of two in which the total frequency of quartets with micronuclei, and the distribution of numbers of micronuclei per quartet, were strikingly similar. In the case of the groups of three, two monosomes were from the A and B genomes while one was from the D genome. This is interpreted as evidence of homoeology of chromosomes of a group and also that such chromosomes have undergone less change than those that do not form such series.


2019 ◽  
Vol 31 (5) ◽  
pp. 1094-1112 ◽  
Author(s):  
Ikenna O. Okekeogbu ◽  
Sivakumar Pattathil ◽  
Susana M. González Fernández-Niño ◽  
Uma K. Aryal ◽  
Bryan W. Penning ◽  
...  

2012 ◽  
Vol 56 (7) ◽  
pp. 3797-3805 ◽  
Author(s):  
Aneela Qamar ◽  
Dasantila Golemi-Kotra

ABSTRACTThefmtAgene is a member of theStaphylococcus aureuscore cell wall stimulon. The FmtA protein interacts with β-lactams through formation of covalent species. Here, we show that FmtA has weakd-Ala-d-Ala-carboxypeptidase activity and is capable of covalently incorporating C14-Gly into cell walls. The fluorescence microscopy study showed that the protein is localized to the cell division septum. Furthermore, we show that wall teichoic acids interact specifically with FmtA and mediate recruitment of FmtA to theS. aureuscell wall. Subjection ofS. aureusto FmtA concentrations of 0.1 μM or less induces autolysis and biofilm production. This effect requires the presence of wall teichoic acids. At FmtA concentrations greater than 0.2 μM, autolysis and biofilm formation inS. aureusare repressed and growth is enhanced. Our findings indicate dual roles of FmtA inS. aureusgrowth, whereby at low concentrations, FmtA may modulate the activity of the major autolysin (AtlA) ofS. aureusand, at high concentrations, may participate in synthesis of cell wall peptidoglycan. These two roles of FmtA may reflect dual functions of FmtA in the absence and presence of cell wall stress, respectively.


Sign in / Sign up

Export Citation Format

Share Document