scholarly journals Searching for dark photon dark matter in LIGO O1 data

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Huai-Ke Guo ◽  
Keith Riles ◽  
Feng-Wei Yang ◽  
Yue Zhao

AbstractDark matter exists in our Universe, but its nature remains mysterious. The remarkable sensitivity of the Laser Interferometer Gravitational-Wave Observatory (LIGO) may be able to solve this mystery. A good dark matter candidate is the ultralight dark photon. Because of its interaction with ordinary matter, it induces displacements on LIGO mirrors that can lead to an observable signal. In a study that bridges gravitational wave science and particle physics, we perform a direct dark matter search using data from LIGO’s first (O1) data run, as opposed to an indirect search for dark matter via its production of gravitational waves. We demonstrate an achieved sensitivity on squared coupling as $$\sim\! 4\times 1{0}^{-45}$$~4×10−45, in a $$U{(1)}_{{\rm{B}}}$$U(1)B dark photon dark matter mass band around $${m}_{{\rm{A}}} \sim 4\,\times 1{0}^{-13}$$mA~4×10−13 eV. Substantially improved search sensitivity is expected during the coming years of continued data taking by LIGO and other gravitational wave detectors in a growing global network.

2005 ◽  
Vol 14 (05) ◽  
pp. 751-762 ◽  
Author(s):  
J. D. VERGADOS ◽  
P. QUENTIN ◽  
D. STROTTMAN

The recent WMAP data have confirmed that exotic dark matter together with the vacuum energy (cosmological constant) dominate in the flat universe. Supersymmetry provides a natural dark matter candidate, the lightest supersymmetric particle (LSP). Thus direct dark matter detection is central to particle physics and cosmology. Most of the research on this issue has hitherto focused on the detection of the recoiling nucleus. In this paper, we study transitions to the excited states, focusing on the first excited state at 50 keV of Iodine A=127. We find that the transition rate to this excited state is ≼10 percent of the transition to the ground state. So, in principle, the extra signature of the gamma ray following its de-excitation can be exploited experimentally.


2002 ◽  
Vol 17 (24) ◽  
pp. 3421-3431 ◽  
Author(s):  
◽  
H. V. KLAPDOR-KLEINGROTHAUS

Dark matter is at present one of the most exciting field of particle physics and cosmology. We review the status of undergound experiments looking for cold and hot dark matter.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Amin Aboubrahim ◽  
Michael Klasen ◽  
Pran Nath

Abstract We present a particle physics model to explain the observed enhancement in the Xenon-1T data at an electron recoil energy of 2.5 keV. The model is based on a U(1) extension of the Standard Model where the dark sector consists of two essentially mass degenerate Dirac fermions in the sub-GeV region with a small mass splitting interacting with a dark photon. The dark photon is unstable and decays before the big bang nucleosynthesis, which leads to the dark matter constituted of two essentially mass degenerate Dirac fermions. The Xenon-1T excess is computed via the inelastic exothermic scattering of the heavier dark fermion from a bound electron in xenon to the lighter dark fermion producing the observed excess events in the recoil electron energy. The model can be tested with further data from Xenon-1T and in future experiments such as SuperCDMS.


2021 ◽  
Author(s):  
Timur Bikbaev ◽  
Maxim Khlopov ◽  
Andrey Mayorov

2020 ◽  
Vol 200 (5-6) ◽  
pp. 428-436
Author(s):  
G. Angloher ◽  
P. Carniti ◽  
I. Dafinei ◽  
N. Di Marco ◽  
A. Fuss ◽  
...  

Abstract COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches) is an experiment employing cryogenic calorimeters, dedicated to direct dark matter search in underground laboratories. Its goal is to cross-check the annual modulation signal the DAMA collaboration has been detecting for about 20 years (Bernabei et al. in Nucl Part Phys Proc 303–305:74–79, 2018. 10.1016/j.nuclphysbps.2019.03.015) and which has been ruled out by other experiments in certain dark matter scenarios. COSINUS can provide a model-independent test by the use of the same target material (NaI), with the additional chance of discriminating $$\beta /\gamma$$ β / γ events from nuclear recoils on an event-by-event basis, by the application of a well-established temperature sensor technology developed within the CRESST collaboration. Each module is constituted by two detectors: the light detector, that is a silicon beaker equipped with a transition edge sensor (TES), and the phonon detector, a small cubic NaI crystal interfaced with a carrier of a harder material (e.g. $$\hbox {CdWO}_4$$ CdWO 4 ), also instrumented with a TES. This technology had so far never been applied to NaI crystals because of several well-known obstacles, and COSINUS is the first experiment which succeeded in operating NaI crystals as cryogenic calorimeters. Here, we present the COSINUS project, describe the achievements and the challenges of the COSINUS prototype development and discuss the status and the perspectives of this NaI-based cryogenic frontier.


2018 ◽  
Vol 179 ◽  
pp. 01020 ◽  
Author(s):  
M. Raggi

While accelerator particle physics has traditionally focused on exploring dark matter through highenergy experiments, testing dark-sectors hypothesis requires innovative low energy experiments that use highintensity beams and high-sensitivity detectors. In this scenario attractive opportunities are offered to low energy machines and flavour experiments. In this paper we will focus our attention on the Dark Photon (DP) scenario, reviewing the current status of searches and new opportunities with particular attention to the PADME experiment at Laboratori Nazionali di Frascati.


2019 ◽  
Vol 789 ◽  
pp. 45-53 ◽  
Author(s):  
K. Abe ◽  
K. Hiraide ◽  
K. Ichimura ◽  
Y. Kishimoto ◽  
K. Kobayashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document