Dynamics of insulin secretion in obesity and diabetes

2000 ◽  
Vol 24 (S2) ◽  
pp. S29-S31 ◽  
Author(s):  
KS Polonsky
Diabetes ◽  
1991 ◽  
Vol 40 (9) ◽  
pp. 1163-1169 ◽  
Author(s):  
J. W. Ensinck ◽  
E. C. Laschansky ◽  
R. E. Vogel ◽  
D. A. D'Alessio

2020 ◽  
Vol 14 (6) ◽  
pp. 2169-2175
Author(s):  
Saurav Khatiwada ◽  
Shipra Agarwal ◽  
Devasenathipathy Kandasamy ◽  
V.P. Jyotsna ◽  
Rajeev Kumar ◽  
...  

Endocrinology ◽  
2011 ◽  
Vol 152 (8) ◽  
pp. 3005-3017 ◽  
Author(s):  
Katie T. Y. Lee ◽  
Subashini Karunakaran ◽  
Maggie M. Ho ◽  
Susanne M. Clee

Recently, novel inbred mouse strains that are genetically distinct from the commonly used models have been developed from wild-caught mice. These wild-derived inbred strains have been included in many of the large-scale genomic projects, but their potential as models of altered obesity and diabetes susceptibility has not been assessed. We examined obesity and diabetes-related traits in response to high-fat feeding in two of these strains, PWD/PhJ (PWD) and WSB/EiJ (WSB), in comparison with C57BL/6J (B6). Young PWD mice displayed high fasting insulin levels, although they had normal insulin sensitivity. PWD mice subsequently developed a much milder and delayed-onset obesity compared with B6 mice but became as insulin resistant. PWD mice had a robust first-phase and increased second-phase glucose-stimulated insulin secretion in vivo, rendering them more glucose tolerant. WSB mice were remarkably resistant to diet-induced obesity and maintained very low fasting insulin throughout the study. WSB mice exhibited more rapid glucose clearance in response to an insulin challenge compared with B6 mice, consistent with their low percent body fat. Interestingly, in the absence of a measurable in vivo insulin secretion, glucose tolerance of WSB mice was better than B6 mice, likely due to their enhanced insulin sensitivity. Thus PWD and WSB are two obesity-resistant strains with unique insulin secretion phenotypes. PWD mice are an interesting model that dissociates hyperinsulinemia from obesity and insulin resistance, whereas WSB mice are a model of extraordinary resistance to a high-fat diet.


Endocrinology ◽  
1968 ◽  
Vol 83 (3) ◽  
pp. 572-584 ◽  
Author(s):  
DONALD L. CURRY ◽  
LESLIE L. BENNETT ◽  
GEROLD M. GRODSKY

1980 ◽  
Vol 93 (1) ◽  
pp. 54-60 ◽  
Author(s):  
Ove Berglund

Abstract. The dynamics of insulin release were studied in the perfused pancreas of rats and mice. Perfusion of the rat pancreas with 20 mm D-glucose resulted in the classical biphasic release of insulin with a rising second phase. However, in normal C57BL/KsJ-mice and noninbred mice, whether fed or starved, the second phase was nearly constant. The secretory dymanics of KsJ-mice were essentially the same, whether the glucose concentration was 30 or 20 mm, whether the medium contained 2.56 or 8 mm Ca2+, and whether or not the medium was supplemented with 5 mm pyruvate, 5 mm glutamate, and 5 mm fumarate. Insulin secretion in these mice was almost totally inhibited by omission of Ca2+, and was markedly enhanced by 3-isobutyl-1-methylxanthine. Insulin release during the constant phase was reversed by lowering the glucose concentration. A second rise of glucose from 3 to 20 mm produced a secretory pattern very similar to the first response. These studies indicate that the dynamics of insulin secretion are somewhat different in rats and mice. Since similar results were obtained with C57BL/KsJ-mice and non-inbred mice, the liability of KsJ-mice to develop β-cell failure when stressed by the mutated db gene is not related to the constancy of the second insulin secretory phase.


Sign in / Sign up

Export Citation Format

Share Document