scholarly journals Immunoglobulin diversification in B cell malignancies: internal splicing of heavy chain variable region as a by-product of somatic hypermutation

Leukemia ◽  
2002 ◽  
Vol 16 (4) ◽  
pp. 636-644 ◽  
Author(s):  
RJ Bende ◽  
WM Aarts ◽  
ST Pals ◽  
CJM van Noesel
Genome ◽  
1989 ◽  
Vol 31 (1) ◽  
pp. 118-121 ◽  
Author(s):  
Matthias R. Wabl ◽  
Hans-Martin Jäck ◽  
R. C. von Borstel ◽  
Charles M. Steinberg

The authors have developed a method to measure the rate of spontaneous mutations taking place in IgH, the gene encoding the immunoglobulin heavy chain. When an amber chain-termination codon mutates to a sense codon, translation of the polypeptide chain will be completed, and mutant cells producing the heavy chain can be detected with a fluorescent labelled antibody. The protocol used is the compartmentalization test which minimizes any effect of selection. In subclones of the pre-B lymphocyte line 18–81, the spontaneous mutation rate in the part of IgH encoding the variable region is somewhat greater than 10−5 mutations per base pair per generation. This supports the hypothesis that hypermutation is not dependent on cell stimulation by an antigen. In a hybrid between a cell of this line and a myeloma (which represents the terminal stage of the B-cell lineage), the mutation rate was too low to be determined by this test, less than 10−9. When the same loss to gain procedure system was used with an opal chain-terminating codon in the part of IgH encoding the constant region (Cμ), a high rate of reversion by deletion was found. Long (more than one exon) and short (less than one exon) deletions occurred at rates of 1.7 × 10−5 and 1.4 × 10−7 per generation, respectively. It is thought that the high rate of deletion is not related to somatic hypermutation but rather to DNA rearrangement during the heavy-chain class switch, which is occurring in these pre-B cell lines. The point mutation rate was too low to be detected above the background of deletion mutants, less than 5 × 10−8. The immunoglobulin mutator system works weakly, if at all, on two other, nonimmunoglobulin, genes tested: B2m (β2 microglobulin) and the gene for ouabain resistance.Key words: pre-B lymphocyte, B lymphocyte, spontaneous mutation rate, compartmentalization test, deletion mutation, hypermutation.


2001 ◽  
Vol 145 (4) ◽  
pp. 680-680 ◽  
Author(s):  
F.J. Child ◽  
R. Russell-Jones ◽  
A.J. Woolford ◽  
E. Calonje ◽  
S.J. Whittaker

2003 ◽  
Vol 127 (11) ◽  
pp. 1443-1450
Author(s):  
Jai Hyang Go ◽  
Dae Shick Kim ◽  
Tae Jin Kim ◽  
Young H. Ko ◽  
Hyun Ki Ra ◽  
...  

Abstract Context.—Many diffuse large B-cell lymphomas (DLBCLs) of the stomach are believed to represent high-grade transformation of low-grade marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue type, which is of memory B-cell origin, displaying evidence for positive antigen selection and a low level of ongoing somatic mutation of the rearranged immunoglobulin heavy-chain variable region (VH) genes. The pattern of somatic mutation has been studied little in intestinal DLBCLs. Objective.—To assess evidence for antigen selection and the levels of ongoing mutation, we analyzed the ratio of replacement to silent mutations, as well as the frequency of intraclonal sequence variation in gastric and small intestinal DLBCLs that showed no concomitant low-grade component. Design.—Genomic DNA was extracted from formalin-fixed paraffin blocks of gastric (n = 6) and small intestinal (n = 6) DLBCLs. The complementarity-determining region 2 and framework region 3 sequences (<200 base pairs) of the rearranged immunoglobulin VH gene were obtained from polymerase chain reaction–amplified product, and the ratio of replacement-to-silent mutations and the frequency of intraclonal sequence variation were determined. Results.—Clustering of replacement mutations in complementarity-determining region 2 with a high (>2.9) ratio of replacement-to-silent mutations was observed in 5 gastric DLBCLs, whereas it was recognized in only 1 intestinal DLBCL. Intraclonal sequence variation was observed in 6 intestinal and 5 gastric DLBCLs. The frequency of ongoing mutation was much higher in the intestinal (median, 0.33%) than in the gastric DLBCLs (median, 0.13%), but the difference was not statistically significant (P = .09). Conclusions.—The mutation pattern was consistent with positive antigen selection in gastric DLBCLs, but not in the intestinal tumors. Ongoing mutation was much more frequent in the intestinal than in the gastric DLBCLs. These findings suggest that positive antigen selection plays a major role in a significant proportion of gastric tumors, whereas germinal center reaction with aberrant mutation is important in small intestinal DLBCLs.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Monique R. Bennett ◽  
Jinhui Dong ◽  
Robin G. Bombardi ◽  
Cinque Soto ◽  
Helen M. Parrington ◽  
...  

ABSTRACT Staphylococcus aureus is an important human pathogen that infects nearly every human tissue. Like most organisms, the acquisition of nutrient iron is necessary for its survival. One route by which it obtains this metal is through the iron-regulated surface determinant (Isd) system that scavenges iron from the hemoglobin of the host. We show that the heavy chain variable region IGHV1-69 gene commonly encodes human monoclonal antibodies (mAbs) targeting IsdB-NEAT2. Remarkably, these antibodies bind to multiple antigenic sites. One class of IGHV1-69-encoded mAbs blocks S. aureus heme acquisition by binding to the heme-binding site of NEAT2, while two additional classes reduce the bacterial burden in vivo by an alternative Fc receptor-mediated mechanism. We further identified clonal lineages of IGHV1-69-encoded mAbs using donor samples, showing that each lineage diversifies during infection by somatic hypermutation. These studies reveal that IGHV1-69-encoded antibodies contribute to a protective immune response, furthering our understanding of the correlates of protection against S. aureus infection. IMPORTANCE The human pathogen Staphylococcus aureus causes a wide range of infections, including skin abscesses and sepsis. There is currently no licensed vaccine to prevent S. aureus infection, and its treatment has become increasingly difficult due to antibiotic resistance. One potential way to inhibit S. aureus pathogenesis is to prevent iron acquisition. The iron-regulated surface determinant (Isd) system has evolved in S. aureus to acquire hemoglobin from the human host as a source of heme-iron. In this study, we investigated the molecular and structural basis for antibody-mediated correlates against a member of the Isd system, IsdB. The association of immunoglobulin heavy chain variable region IGHV1-69 gene-encoded human monoclonal antibodies with the response against S. aureus IsdB is described using structural and functional studies to define the importance of this antibody class. We also determine that somatic hypermutation in the development of these antibodies hinders rather than fine-tunes the immune response to IsdB.


Sign in / Sign up

Export Citation Format

Share Document