complementarity determining region
Recently Published Documents


TOTAL DOCUMENTS

288
(FIVE YEARS 52)

H-INDEX

42
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Olaposi Idowu Omotuyi ◽  
Olubiyi Olujide ◽  
Oyekanmi Nash ◽  
Elizabeth O Afolabi ◽  
Babatunji Oyinloye ◽  
...  

Background: SARS-CoV-2, the causative virus for COVID-19 has now super-mutated into the Omicron (Om) variant. On its spike glycoprotein alone, more than 30 substitutions have been characterized with 15 within the receptor binding domain (RBD); It therefore calls to question the transmissibility and antibody escapability of Omicron. This study was setup to investigate the Omicron RBD interaction with ACE2 (host receptor) and a SARS-CoV-2 neutralizing monoclonal antibody (mAb). Methods: In-silico mutagenesis was used to generate the Om-RBD in complex with ACE2 or mAb from the wildtype. All-atom molecular dynamics (MD) simulation trajectories were analyzed for interaction. Results: MD trajectories showed that Omicron RBD has evolved into an efficient ACE2 binder, via pi-pi (Om-RBD-Y501/ACE2-Y41) and salt-bridge (Om-RBD-K493/ACE2-Y41) interactions. Conversely, in binding mAb, it has become less efficient (Center of mass distance of RBD from mAb complex, wildtype-RBD =30 A, Omicron-RBD= 41 A). Disruption of Om-RBD/mAb complex resulted from loose interaction between Om-RBD and the light chain complementarity-determining region residues. Conclusions: Omicron is expected to be better transmissible and less efficiently interacting with neutralizing convalescent mAbs. General significance: Our results elucidate the mechanisms for higher transmissibility in Omicron variant.


2021 ◽  
Vol 118 (37) ◽  
pp. e2020577118
Author(s):  
Lucky Ahmed ◽  
Priyanka Gupta ◽  
Kyle P. Martin ◽  
Justin M. Scheer ◽  
Andrew E. Nixon ◽  
...  

Feeding biopharma pipelines with biotherapeutic candidates that possess desirable developability profiles can help improve the productivity of biologic drug discovery and development. Here, we have derived an in silico profile by analyzing computed physicochemical descriptors for the variable regions (Fv) found in 77 marketed antibody-based biotherapeutics. Fv regions of these biotherapeutics demonstrate significant diversities in their germlines, complementarity determining region loop lengths, hydrophobicity, and charge distributions. Furthermore, an analysis of 24 physicochemical descriptors, calculated using homology-based molecular models, has yielded five nonredundant descriptors whose distributions represent stability, isoelectric point, and molecular surface characteristics of their Fv regions. Fv regions of candidates from our internal discovery campaigns, human next-generation sequencing repertoires, and those in clinical-stages (CST) were assessed for similarity with the physicochemical profile derived here. The Fv regions in 33% of CST antibodies show physicochemical properties that are dissimilar to currently marketed biotherapeutics. In comparison, physicochemical characteristics of ∼29% of the Fv regions in human antibodies and ∼27% of our internal hits deviated significantly from those of marketed biotherapeutics. The early availability of this information can help guide hit selection, lead identification, and optimization of biotherapeutic candidates. Insights from this work can also help support portfolio risk assessment, in-licensing, and biopharma collaborations.


Author(s):  
Anja Mösch ◽  
Dmitrij Frishman

Abstract Summary The ability of a T cell to recognize foreign peptides is defined by a single α and a single β hypervariable complementarity determining region (CDR3), which together form the T cell receptor (TCR) heterodimer. In ∼30%-35% of T cells, two α chains are expressed at the mRNA level but only one α chain is part of the functional TCR. This effect can also be observed for β chains, although it is less common. The identification of functional α/β chain pairs is instrumental in high-throughput characterization of therapeutic TCRs. TCRpair is the first method that predicts whether an α and β chain pair forms a functional, HLA-A*02:01 specific TCR without requiring the sequence of a recognized peptide. By taking additional amino acids flanking the CDR3 regions into account, TCRpair achieves an AUC of 0.71. Availability TCRpair is implemented in Python using TensorFlow 2.0 and is freely available at https://www.github.com/amoesch/TCRpair Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Bonnie Mallard ◽  
◽  
Mehdi Emam ◽  
Shannon Cartwright ◽  
Tess Altvater-Hughes ◽  
...  

From the beginning, cattle have made important contributions to the field of immunology, including the development of the first Mycobacterium bovis BCG vaccine for human tuberculosis in 1921. In 1981 the first report of a biosynthesized polypeptide vaccine against Foot and Mouth Disease Virus (FMDV) using the VP3 protein expressed in Escherichia coli (E. coli) was made for cattle. Cattle also possess a substantial proportion of T cells expressing the γδ T-cell receptor which helped to elucidate the role of these unique cells in host defence. More recently, it was discovered that cattle produce antibodies with ultra-long Complementarity Determining Region (CDR) - 3. This seminal finding has allowed the production of bovine therapeutic broadly neutralizing antibodies with ultra-long CDRs to passively treat various virial infections in humans and play a key role in protecting cattle. This chapter will review advances in bovine immunology, particularly as it relates to dairy cattle.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Timothy J. C. Tan ◽  
Meng Yuan ◽  
Kaylee Kuzelka ◽  
Gilberto C. Padron ◽  
Jacob R. Beal ◽  
...  

AbstractSince the COVID-19 pandemic onset, the antibody response to SARS-CoV-2 has been extensively characterized. Antibodies to the receptor binding domain (RBD) on the spike protein are frequently encoded by IGHV3-53/3-66 with a short complementarity-determining region (CDR) H3. Germline-encoded sequence motifs in heavy chain CDRs H1 and H2 have a major function, but whether any common motifs are present in CDR H3, which is often critical for binding specificity, is not clear. Here, we identify two public clonotypes of IGHV3-53/3-66 RBD antibodies with a 9-residue CDR H3 that pair with different light chains. Distinct sequence motifs on CDR H3 are present in the two public clonotypes that seem to be related to differential light chain pairing. Additionally, we show that Y58F is a common somatic hypermutation that results in increased binding affinity of IGHV3-53/3-66 RBD antibodies with a short CDR H3. These results advance understanding of the antibody response to SARS-CoV-2.


Antibodies ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 23
Author(s):  
Young Do Kwon ◽  
Xiangchun E. Wang ◽  
Michael F. Bender ◽  
Rong Yang ◽  
Yile Li ◽  
...  

Antibody 10E8 is capable of effectively neutralizing HIV through its recognition of the membrane-proximal external region (MPER), and a suitably optimized version of 10E8 might have utility in HIV therapy and prophylaxis. However, 10E8 displays a three-peak profile on size-exclusion chromatography (SEC), complicating its manufacture. Here we show cis-trans conformational isomerization of the Tyr-Pro-Pro (YPP) motif in the heavy chain 3rd complementarity-determining region (CDR H3) of antibody 10E8 to be the mechanistic basis of its multipeak behavior. We observed 10E8 to undergo slow conformational isomerization and delineate a mechanistic explanation for effective comodifiers that were able to resolve its SEC heterogeneity and to allow an evaluation of the critical quality attribute of aggregation. We determined crystal structures of single and double alanine mutants of a key di-proline motif and of a light chain variant, revealing alternative conformations of the CDR H3. We also replicated both multi-peak and delayed SEC behavior with MPER-antibodies 4E10 and VRC42, by introducing a Tyr-Pro (YP) motif into their CDR H3s. Our results show how a conformationally dynamic CDR H3 can provide the requisite structural plasticity needed for a highly hydrophobic paratope to recognize its membrane-proximal epitope.


2021 ◽  
Author(s):  
Ariel Galindo-Albarrán ◽  
Sarah Castan ◽  
Jérémy C. Santamaria ◽  
Olivier P. Joffre ◽  
Bart Haegeman ◽  
...  

Regulatory T lymphocytes expressing the forkhead/winged helix transcription factor Foxp3 (Treg) play a vital role in the protection of the organism from autoimmune disease and other immunopathologies. The antigen-specificity of Treg plays an important role in their <i>in vivo</i> activity. We therefore assessed the diversity of the T cell receptors for antigen (TCR) expressed by Treg newly developed in the thymus of autoimmune type I diabetes-prone NOD mice and compared it to the control mouse strain C57BL/6. Our results demonstrate that usage of the TCRa and TCRb variable (V) and joining (J) segments, length of the complementarity determining region (CDR) 3, and the diversity of the TCRa and TCRb chains are comparable between NOD and C57BL/6 mice. Genetic defects affecting the diversity of the TCR expressed by newly developed Treg therefore do not appear to be involved in the etiology of type I diabetes in the NOD mouse.


2021 ◽  
Author(s):  
Ariel Galindo-Albarrán ◽  
Sarah Castan ◽  
Jérémy C. Santamaria ◽  
Olivier P. Joffre ◽  
Bart Haegeman ◽  
...  

Regulatory T lymphocytes expressing the forkhead/winged helix transcription factor Foxp3 (Treg) play a vital role in the protection of the organism from autoimmune disease and other immunopathologies. The antigen-specificity of Treg plays an important role in their <i>in vivo</i> activity. We therefore assessed the diversity of the T cell receptors for antigen (TCR) expressed by Treg newly developed in the thymus of autoimmune type I diabetes-prone NOD mice and compared it to the control mouse strain C57BL/6. Our results demonstrate that usage of the TCRa and TCRb variable (V) and joining (J) segments, length of the complementarity determining region (CDR) 3, and the diversity of the TCRa and TCRb chains are comparable between NOD and C57BL/6 mice. Genetic defects affecting the diversity of the TCR expressed by newly developed Treg therefore do not appear to be involved in the etiology of type I diabetes in the NOD mouse.


Sign in / Sign up

Export Citation Format

Share Document