scholarly journals A versatile smart transformation optics device with auxetic elasto-electromagnetic metamaterials

2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Dongheok Shin ◽  
Yaroslav Urzhumov ◽  
Donghwan Lim ◽  
Kyoungsik Kim ◽  
David R. Smith
2015 ◽  
Vol 107 (2) ◽  
pp. 021908 ◽  
Author(s):  
Dongheok Shin ◽  
Junhyun Kim ◽  
Ilsung Seo ◽  
Kyoungsik Kim

2021 ◽  
pp. 114-124
Author(s):  
Adrian P Sutton

Metamaterials are composites that have extended the concept of a material. They derive their properties from strong coupling between carefully designed and positioned structural units within them and an incident elastic or electromagnetic wave. They are paragons of materials design. In certain frequency ranges of the incident wave they may display properties that no other materials have ever shown, such as negative refraction. First, an elastic metamaterial demonstrates the principle. Electromagnetic metamaterials have been designed using transformation optics to cloak an object and make it invisible in a certain range of frequencies. The concept of metamaterials has been applied to protect cities and coastal regions from seismic waves and ocean waves.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Ali Mohajer Hejazi ◽  
Gert-Jan Stockman ◽  
Yannick Lefevre ◽  
Vincent Ginis ◽  
Werner Coomans

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hossein Eskandari ◽  
Juan Luis Albadalejo-Lijarcio ◽  
Oskar Zetterstrom ◽  
Tomáš Tyc ◽  
Oscar Quevedo-Teruel

AbstractConformal transformation optics is employed to enhance an H-plane horn’s directivity by designing a graded-index all-dielectric lens. The transformation is applied so that the phase error at the aperture is gradually eliminated inside the lens, leading to a low-profile high-gain lens antenna. The physical space shape is modified such that singular index values are avoided, and the optical path inside the lens is rescaled to eliminate superluminal regions. A prototype of the lens is fabricated using three-dimensional printing. The measurement results show that the realized gain of an H-plane horn antenna can be improved by 1.5–2.4 dB compared to a reference H-plane horn.


Sign in / Sign up

Export Citation Format

Share Document