scholarly journals Anthracycline-containing chemotherapy causes long-term impairment of mitochondrial respiration and increased reactive oxygen species release in skeletal muscle

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Gilles Gouspillou ◽  
Celena Scheede-Bergdahl ◽  
Sally Spendiff ◽  
Madhusudanarao Vuda ◽  
Brian Meehan ◽  
...  
2020 ◽  
Vol 319 (2) ◽  
pp. E376-E387 ◽  
Author(s):  
Valerie Politis-Barber ◽  
Henver S. Brunetta ◽  
Sabina Paglialunga ◽  
Heather L. Petrick ◽  
Graham P. Holloway

White adipose tissue (WAT) dysfunction in obesity is implicated in the onset of whole body insulin resistance. Alterations in mitochondrial bioenergetics, namely impaired mitochondrial respiration and increased mitochondrial reactive oxygen species (mtROS) production, have been suggested to contribute to this metabolic dysregulation. However, techniques investigating mitochondrial function are classically normalized to tissue weight, which may be confounding when considering obesity-related adipocyte hypertrophy. Furthermore, the effect of long-term high-fat diet (HFD) on mtROS in WAT has yet to be elucidated. Therefore, we sought to determine the HFD-mediated temporal changes in mitochondrial respiration and mtROS emission in WAT. C57BL/6N mice received low-fat diet or HFD for 1 or 8 wk and changes in inguinal WAT (iWAT) and epididymal WAT (eWAT) were assessed. While tissue weight-normalized mitochondrial respiration was reduced in iWAT following 8-wk HFD-feeding, this effect was mitigated when adipocyte cell size and/or number were considered. These data suggest HFD does not impair mitochondrial respiratory capacity per adipocyte within WAT. In support of this assertion, within eWAT compensatory increases in lipid-supported and maximal succinate-supported respiration occurred at 8 wk despite cell hypertrophy and increases in WAT inflammation. Although these data suggest impairments in mitochondrial respiration do not contribute to HFD-mediated WAT phenotype, lipid-supported mtROS emission increased following 1-wk HFD in eWAT, while both lipid and carbohydrate-supported mtROS were increased at 8 wk in both depots. Combined, these data establish that while HFD does not impair adipocyte mitochondrial respiratory capacity, increased mtROS is an enduring physiological occurrence within WAT in HFD-induced obesity.


2020 ◽  
Vol 185 (Supplement_1) ◽  
pp. 25-34
Author(s):  
Benyam Yosef ◽  
Yu Zhou ◽  
Kathryn Mouschouris ◽  
James Poteracki ◽  
Shay Soker ◽  
...  

ABSTRACT Introduction Upon injury, skeletal muscle undergoes a multiphase process beginning with degeneration of the damaged tissue, which is accompanied by inflammation and finally regeneration. One consequence of an injured microenvironment is excessive production of reactive oxygen species, which results in attenuated regeneration and recovery of function ultimately leading to fibrosis and disability. The objective of this research was to test the potential of the antioxidant, N-Acetyl-L-Cysteine (NAC), as a mediator of reactive oxygen species damage that results from traumatic muscle injury in order to support repair and regeneration of wounded muscle tissue and improve function recovery. Materials and Methods Adult female Lewis rats were subjected to compartment syndrome injury as previously published by our group. Rats received intramuscular injections of NAC or vehicle at 24, 48, and 72 hours postinjury. Muscle function, tissue fibrosis, and the expression of myogenic and angiogenic markers were measured. Results Muscle function was significantly improved, and tissue fibrosis was significantly decreased in NAC-treated muscles. Conclusions These results suggest that NAC treatment of skeletal muscle after injury may be a viable option for the prevention of long-term fibrosis and scar formation, facilitating recovery of muscle function.


2006 ◽  
Vol 38 (1) ◽  
pp. 23-32 ◽  
Author(s):  
Rachel Navet ◽  
Ange Mouithys-Mickalad ◽  
Pierre Douette ◽  
Claudine M. Sluse-Goffart ◽  
Wieslawa Jarmuszkiewicz ◽  
...  

2009 ◽  
Vol 587 (13) ◽  
pp. 3363-3373 ◽  
Author(s):  
Melissa A. Chambers ◽  
Jennifer S. Moylan ◽  
Jeffrey D. Smith ◽  
Laurie J. Goodyear ◽  
Michael B. Reid

2005 ◽  
Vol 289 (1) ◽  
pp. C207-C216 ◽  
Author(s):  
Li Zuo ◽  
Thomas L. Clanton

Many tissues produce reactive oxygen species (ROS) during reoxygenation after hypoxia or ischemia; however, whether ROS are formed during hypoxia is controversial. We tested the hypothesis that ROS are generated in skeletal muscle during exposure to acute hypoxia before reoxygenation. Isolated rat diaphragm strips were loaded with dihydrofluorescein-DA (Hfluor-DA), a probe that is oxidized to fluorescein (Fluor) by intracellular ROS. Changes in fluorescence due to Fluor, NADH, and FAD were measured using a tissue fluorometer. The system had a detection limit of 1 μM H2O2 applied to the muscle superfusate. When the superfusion buffer was changed rapidly from 95% O2 to 0%, 5%, 21%, or 40% O2, transient elevations in Fluor were observed that were proportional to the rise in NADH fluorescence and inversely proportional to the level of O2 exposure. This signal could be inhibited completely with 40 μM ebselen, a glutathione peroxidase mimic. After brief hypoxia exposure (10 min) or exposure to brief periods of H2O2, the fluorescence signal returned to baseline. Furthermore, tissues loaded with the oxidized form of the probe (Fluor-DA) showed a similar pattern of response that could be inhibited with ebselen. These results suggest that Fluor exists in a partially reversible redox state within the tissue. When Hfluor-loaded tissues were contracted with low-frequency twitches, Fluor emission and NADH emission were significantly elevated in a way that resembled the hypoxia-induced signal. We conclude that in the transition to low intracellular Po2, a burst of intracellular ROS is formed that may have functional implications regarding skeletal muscle O2-sensing systems and responses to acute metabolic stress.


2021 ◽  
Vol 01 ◽  
Author(s):  
Hong Xiang ◽  
Fangyue Guo ◽  
Qi Zhou ◽  
Xufeng Tao ◽  
Deshi Dong

Background: Chronic pancreatitis (CP) is a long-term risk factor for pancreatic ductal adenocarcinoma (PDAC), and both diseases share a common etiology. The activation of Pancreatic stellate cells (PaSCs) caused by inflammation of the chronic pancreas plays a pivotal role in the pathology of pancreatic fibrosis and the malignant phenotype of PDAC. However, the central role of activated PaSCs in acinar-to-ductal metaplasia (ADM) remains unknown. Objective: In the present study, we investigated the link between pancreatic fibrosis and ADM and the possible underlying mechanism. Methods: A caerulein-treated mouse CP model was established, and Masson trichrome histochemical stain and transmission electron microscope (TEM) were used to observe stromal fibrosis and cell ultrastructure, respectively. The expression of amylase and cytokeratin 19 (CK19), mitochondria respiration, and reactive oxygen species (ROS) were detected in vitro in the co-culture model of primary pancreatic acinar cells and PaSCs. Results: The activation of PaSCs and pancreatic fibrosis were accompanied by ADM in pancreatic parenchyma in caerulein-treated mice, which was verified by the co-cultivation experiment in vitro. Furthermore, we showed that activated PaSCs promote ADM by disrupting mitochondrial respiration and releasing ROS. The expression of inflammation-and ADM-related genes, including S100A8, S100A9, and CK19, was observed to be up-regulated in pancreatic acinar cells in the presence of activated PaSCs. The expression of S100A9 and CK19 proteins was also up-regulated in acinar cells co-cultured with activated PaSCs. Conclusion: The manipulation of mitochondrial respiration and ROS release is a promising preventive and/or therapeutic strategy for PDAC, and S100A9 is expected to be a therapeutic target to block the ADM process induced by the activation of PaSCs.


Sign in / Sign up

Export Citation Format

Share Document