A colorimetric method for the micro-determination of calcium in plant tissue extracts

The Analyst ◽  
1950 ◽  
Vol 75 (889) ◽  
pp. 211 ◽  
Author(s):  
A. J. McGregor
1990 ◽  
Vol 21 (13-16) ◽  
pp. 1519-1529 ◽  
Author(s):  
R.M. Carlson ◽  
R.I. Cabrera ◽  
J.L. Paul ◽  
J. Quick ◽  
R.Y. Evans

2009 ◽  
Vol 19 (2) ◽  
pp. 439-444 ◽  
Author(s):  
Kristy A. Ott-Borrelli ◽  
Richard T. Koenig ◽  
Carol A. Miles

Leafy green vegetables such as lettuce (Lactuca sativa), Asian greens (Brassica spp.) and spinach (Spinacia oleracea) have a tendency to accumulate high concentrations of potentially harmful nitrate–nitrogen (NO3-N). It would be advantageous for growers to have rapid and inexpensive methods to accurately measure plant tissue NO3-N to make fertility and harvest management decisions for these crops. This study compared fresh sap expressed from whole leaves and analyzed with a Cardy meter with the analysis of dry leaf tissue extracts analyzed with a benchtop ion selective electrode (ISE) and an automated colorimetric method for determining NO3-N concentration. Results from ISE and colorimetric analysis of the same dry leaf tissue extracts had a strong relationship (r2 = 0.92). The ISE was relatively easy to operate and affordable, suggesting it is an adequate substitute for automated colorimetric analysis of dry plant tissue extracts. Results of fresh whole leaf sap analyzed with the Cardy meter showed a poor relationship with dry leaf tissue extracted and analyzed using the ISE (r2 = 0.25) or with colorimetric analysis (r2 = 0.21). When fresh whole leaf sap was diluted 1:1 with aluminum sulfate [Al2(SO4)3] to adjust for potential matrix effects, there was still a relatively poor relationship (r2 = 0.41) between the diluted sap samples analyzed with a Cardy meter and the dry leaf tissue extracted and analyzed with the ISE. When the same dry leaf tissue extracts were analyzed with the Cardy meter and the ISE, the results related well (r2 = 0.96). As a result of tissue processing and/or instrument differences, Cardy meter analysis of sap expressed from whole leaves was not comparable to ISE or colorimetric analyses of dry leaf tissue extracts for leafy green vegetables.


1990 ◽  
Vol 10 (1) ◽  
pp. 89-92 ◽  
Author(s):  
Liliane Larpent ◽  
Christian Verger

The fate of the peritoneal membrane on continuous ambulatory peritoneal dialysis (CAPD) is usually evaluated through the modification of its permeability to various solutes as glucose, creatinine, and urea. Therefore, the accuracy of the methods used for measurements of creatinine is of great importance. A particular problem does exist for creatinine determination as it may be influenced by the presence of glucose. We studied a new enzymatic colorimetric method for creatinine determination in peritoneal dialysis solutions which contain high dextrose concentrations. Creatinine was measured in plasma, urine, and dialysate from 18 patients on CAPD and in pure dextrose solutions, with an enzymatic test (Boehringer Mannheim) and with Jaffe's reaction on two different analyzers: Astra (Beckman) and Eris (Merck). Creatinine results were similar with both assays (Jaffe's reaction and enzymatic test) when measured in blood and urine. However the Jaffe's reaction gave higher creatinine results than the enzymatic test (p < 0.001), when assays were performed in peritoneal dialysis solutions and in pure glucose solutions. In addition, it appeared that other components of dialysis solutions, mainly calcium chloride, influenced unpredictably the results of creatinine with the Jaffe's reaction. We conclude that specific enzymatic test is a more accurate and reliable method to evaluate creatinine kinetics through the peritoneal membrane when determined in CAPD solutions.


Sign in / Sign up

Export Citation Format

Share Document