Identification of surfactant degradation products as toxic organic compounds present in sewage sludge

2001 ◽  
Vol 3 (2) ◽  
pp. 232-237 ◽  
Author(s):  
Marinel la Farré ◽  
María-Jesús García ◽  
Montserrat Castillo ◽  
Josep Riu ◽  
Damià Barceló
1987 ◽  
Vol 19 (3-4) ◽  
pp. 471-482 ◽  
Author(s):  
W. J. Weber ◽  
B. E. Jones ◽  
L. E. Katz

The addition of powdered activated carbon (PAC) to activated sludge treatment systems to enhance removal of specific toxic organic compounds from wastewater was evaluated. Nine organic compounds encompassing a range of solubility, volatility, biodegradability, and adsorptive properties were studied. Kate and equilibrium investigations were conducted to quantify the removal mechanisms of volatilization, biodegradation, biosorption, and carbon adsorption. Results from steady-state bioreactor studies showed that the addition of less than 100 mg/ℓ powdered activated carbon to the influent did not enhance the removal of the biodegradable target compounds investigated: benzene, toluene, ethylbenzene, o-xylene, chlorobenzene, and nitrobenzene. Significantly improved removals of the poorly degradable and non-biodegradable compounds 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, and lindane occurred at influent powdered carbon concentrations in the 12.5 to 25 mg/ℓ range. Influent powdered carbon concentrations of 100 mg/ℓ effected overall removals of greater than 90%. The addition of powdered activated carbon not only reduced effluent concentrations but also reduced the amounts of the volatile compounds stripped to the atmosphere.


2012 ◽  
Vol 76 (8) ◽  
pp. 3401-3410 ◽  
Author(s):  
M. Felipe-Sotelo ◽  
J. Hinchliff ◽  
N. Evans ◽  
P. Warwick ◽  
D. Read

AbstractThe sorption behaviour of I−, Cs+, Ni2+, Eu3+, Th4+ and UO2+2on NRVB (Nirex reference vault backfill) a possible vault backfill, at pH 12.8 was studied. Sorption isotherms generated were compared to results obtained in the presence of cellulose degradation products (CDP). Whereas Cs was not affected by the presence of the organic compounds, a notable reduction in the sorption of Th and Eu to cement was observed. The results also indicated limited removal of Ni from solution (with or without an organic ligand) by sorption, the concentration in solution seemingly being determined solely by solubility processes. In the case of uranium, the presence of CDP increased the sorption to cement by almost one order of magnitude. Further studies into the uptake of CDP by cement are being undertaken to identify the mechanism(s) responsible.


2021 ◽  
Vol 76 (9) ◽  
pp. 1029-1042
Author(s):  
M. A. Leninskii ◽  
M. D. Shachneva ◽  
E. I. Savel’eva ◽  
N. L. Koryagina

Sign in / Sign up

Export Citation Format

Share Document