powdered activated carbon
Recently Published Documents





2021 ◽  
Vol 14 (1) ◽  
pp. 370
Muthia Elma ◽  
Amalia Enggar Pratiwi ◽  
Aulia Rahma ◽  
Erdina Lulu Atika Rampun ◽  
Mahmud Mahmud ◽  

The high content of natural organic matter (NOM) is one of the challenging characteristics of peat water. It is also highly contaminated and contributes to some water-borne diseases. Before being used for potable purposes, peat water must undergo a series of treatments, particularly for NOM removal. This study investigated the effect of coagulation using aluminum sulfate coagulant and adsorption using powdered activated carbon (PAC) as a pretreatment of ultrafiltration (UF) for removal of NOM from actual peat water. After preparation and characterization of polysulfone (Psf)-based membrane, the system’s performance was evaluated using actual peat water, particularly on NOM removal and the UF performances. The coagulation and adsorption tests were done under variable dosings. Results show that pretreatment through coagulation–adsorption successfully removed most of the NOM. As such, the UF fouling propensity of the pretreated peat water was substantially lowered. The optimum aluminum sulfate dosing of 175 mg/L as the first pretreatment stage removed up to 75–78% NOM. Further treatment using the PAC-based adsorption process further increased 92–96% NOM removals at an optimum PAC dosing of 120 mg/L. The final UF-PSf treatment reached NOM removals of 95% with high filtration fluxes of up to 92.4 L/(m2.h). The combination of three treatment stages showed enhanced UF performance thanks to partial pre-removal of NOM that otherwise might cause severe membrane fouling.

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4406
Anita Kwaśniewska ◽  
Michał Świetlicki ◽  
Adam Prószyński ◽  
Grzegorz Gładyszewski

In the present study, starch/powdered activated carbon composite films were prepared by incorporating various amounts of powdered activated carbon (PAC)—1–5, 10, and 15 %—into a starch matrix, using the solvent casting method. The effect of PAC addition on the biopolymer film was investigated. The mechanical properties were examined by ultra-nanoindentation, nanoscratch, and micro-tensile tests. Since the mechanical properties of biopolymer films are correlated with their structure, the effect of PAC addition was tested using X-ray diffraction. The surface parameters morphology and wettability were analyzed by atomic force microscopy (AFM) and contact angle measurements. The barrier properties were examined by determining water vapor permeability and the water solubility index. The obtained results did not show a monotonic dependence of the mechanical parameters on PAC content, with the exception of the maximum strain, which decreased as the amount of the additive increased. The visible effect of PAC addition was manifested in changes in the adhesive force value and in water vapor permeability (WVP). The barrier properties decreased with the increase of the filler content.

2021 ◽  
Vol 27 (6) ◽  
pp. 210496-0
Tae-Kyoung Kim ◽  
Woo-Seok Choe ◽  
Taeyeon Kim ◽  
Seon-Ha Chae ◽  
Yu Sik Hwang ◽  

Because disinfectants have been essential during the COVID-19 pandemic, the global demand for benzalkonium chlorides (BACs) has significantly increased. BACs can inactivate coronaviruses, but are known as toxic. In this study, we investigated the adsorption mechanisms of BAC12, BAC14, and BAC16 in water using powdered activated carbon (PAC). The effects of the reaction time, pH, and temperature on the adsorption kinetics of BACs were examined. The adsorption reaction followed pseudo-second-order kinetics, and better fitted to the Langmuir isotherm than the Freundlich isotherm. The best adsorption of BACs was achieved at neutral pH conditions. Thermodynamic analysis revealed that adsorption of BACs onto PAC is a spontaneous and endothermic process. Competitive adsorption experiments revealed that BACs with longer alkyl chains were adsorbed more effectively onto PAC than shorter alkyl chain BACs, implying that, while the electrostatic interaction is an important adsorption mechanism for BAC12, van der Waals interaction plays a more important role during the adsorption of BAC14 and BAC16. Finally, we observed the partial detoxification (69%) BAC in adsorption treated water with PAC using a Microtox test.

2021 ◽  
Iuliana Paun ◽  
Cristina Ileana Covaliu ◽  
Florinela Pirvu ◽  
Nicoleta Vasilache ◽  

Behzat Balci ◽  
F. Elcin Erkurt ◽  
Mesut Basibuyuk ◽  
Fuat Budak ◽  
Zeynep Zaimoglu ◽  

Sign in / Sign up

Export Citation Format

Share Document