Syntheses and reactivities of hydrosulfido- or sulfido-bridged heterobimetallic complexes containing Group 6 and Group 9 metals

Author(s):  
Hiroko Kato ◽  
Hidetake Seino ◽  
Yasushi Mizobe ◽  
Masanobu Hidai
1996 ◽  
Vol 35 (16) ◽  
pp. 4764-4769 ◽  
Author(s):  
Donald J. Darensbourg ◽  
Jeffrey C. Yoder ◽  
Matthew W. Holtcamp ◽  
Joseph H. Reibenspies

Author(s):  
David Specklin ◽  
Anaïs Coffinet ◽  
Laure Vendier ◽  
Iker del Rosal ◽  
Chiara Dinoi ◽  
...  

2019 ◽  
Vol 39 (3) ◽  
pp. 12-15
Author(s):  
Ian Whiteley ◽  
Sonia Khatri ◽  
Sue Butler

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiao-ling Jiao ◽  
Jun Li ◽  
Zhe Yu ◽  
Ping-hui Wei ◽  
Hui Song

Abstract Background To compare visual performance between the iris-fixated phakic intraocular len (pIOL) and implantable collamer len (ICL) to correct high myopia. Methods Twenty-four eyes underwent iris-fixated pIOL implantation and 24 eyes underwent ICL implantation. At the 6-month follow-up, the best-corrected visual acuity (BCVA) and uncorrected distance visual acuity (UDVA) were compared between the iris-fixated pIOL and ICL groups. The objective scatter index (OSI), modulation transfer function (MTF) cutoff, and ocular aberrations were performed to evaluate postoperative visual quality between the two groups. Results No significant difference was found in UDVA, BCVA, and spherical equivalent between the iris-fixated pIOL and ICL groups (P > 0.05). Six months after surgery, the following values were significantly higher in the ICL group than in the iris-fixated pIOL group: MTF cutoff, strehl ratio and optical quality analysis system values at contrasts of 9 %, 20 %, and 100 % (P < 0.01). The OSI in the iris-fixated pIOL group was higher than in the ICL group 6 months after surgery (P < 0.01). All high-order aberrations were slightly more severe in the iris-fixated pIOL group than in the ICL group 6 months after surgery, although only trefoil (P = 0.023) differed significantly in this regard. Conclusions Both iris-fixated lenses and ICLs can provide good visual acuity. ICLs confer better visual performance in MTF-associated parameters and induce less intraocular light scattering than iris-fixated pIOLs.


2021 ◽  
Vol 27 (9) ◽  
pp. 3047-3054
Author(s):  
Christoph Schissler ◽  
Erik K. Schneider ◽  
Benjamin Felker ◽  
Patrick Weis ◽  
Martin Nieger ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
pp. 1657
Author(s):  
Petros-Panagis Filippatos ◽  
Nikolaos Kelaidis ◽  
Maria Vasilopoulou ◽  
Dimitris Davazoglou ◽  
Alexander Chroneos

Titania (TiO2) is a key material used as an electron transport in dye-sensitized and halide perovskite solar cells due to its intrinsic n-type conductivity, visible transparency, low-toxicity, and abundance. Moreover, it exhibits pronounced photocatalytic properties in the ultra-violet part of the solar spectrum. However, its wide bandgap (around 3.2 eV) reduces its photocatalytic activity in the visible wavelengths’ region and electron transport ability. One of the most efficient strategies to simultaneously decrease its bandgap value and increase its n-type conductivity is doping with appropriate elements. Here, we have investigated using the density functional theory (DFT), as well as the influence of chromium (Cr), molybdenum (Mo), and tungsten (W) doping on the structural, electronic, and optical properties of TiO2. We find that doping with group 6 elements positively impacts the above-mentioned properties and should be considered an appropriate method for photocatalystic applications. In addition to the pronounced reduction in the bandgap values, we also predict the formation of energy states inside the forbidden gap, in all the cases. These states are highly desirable for photocatalytic applications as they induce low energy transitions, thus increasing the oxide’s absorption within the visible. Still, they can be detrimental to solar cells’ performance, as they constitute trap sites for photogenerated charge carriers.


Sign in / Sign up

Export Citation Format

Share Document