Structural insights into substrate specificity and solvent tolerance in alcohol dehydrogenase ADH-‘A’ from Rhodococcus ruber DSM 44541

2010 ◽  
Vol 46 (34) ◽  
pp. 6314 ◽  
Author(s):  
Martin Karabec ◽  
Andrzej Łyskowski ◽  
Katharina C. Tauber ◽  
Georg Steinkellner ◽  
Wolfgang Kroutil ◽  
...  
ChemBioChem ◽  
2015 ◽  
Vol 16 (10) ◽  
pp. 1512-1519 ◽  
Author(s):  
Christoph Loderer ◽  
Gaurao V. Dhoke ◽  
Mehdi D. Davari ◽  
Wolfgang Kroutil ◽  
Ulrich Schwaneberg ◽  
...  

2017 ◽  
Vol 474 (20) ◽  
pp. 3373-3389 ◽  
Author(s):  
Dong-Dong Meng ◽  
Xi Liu ◽  
Sheng Dong ◽  
Ye-Fei Wang ◽  
Xiao-Qing Ma ◽  
...  

Glycoside hydrolase (GH) family 5 is one of the largest GH families with various GH activities including lichenase, but the structural basis of the GH5 lichenase activity is still unknown. A novel thermostable lichenase F32EG5 belonging to GH5 was identified from an extremely thermophilic bacterium Caldicellulosiruptor sp. F32. F32EG5 is a bi-functional cellulose and a lichenan-degrading enzyme, and exhibited a high activity on β-1,3-1,4-glucan but side activity on cellulose. Thin-layer chromatography and NMR analyses indicated that F32EG5 cleaved the β-1,4 linkage or the β-1,3 linkage while a 4-O-substitued glucose residue linked to a glucose residue through a β-1,3 linkage, which is completely different from extensively studied GH16 lichenase that catalyses strict endo-hydrolysis of the β-1,4-glycosidic linkage adjacent to a 3-O-substitued glucose residue in the mixed-linked β-glucans. The crystal structure of F32EG5 was determined to 2.8 Å resolution, and the crystal structure of the complex of F32EG5 E193Q mutant and cellotetraose was determined to 1.7 Å resolution, which revealed that the exit subsites of substrate-binding sites contribute to both thermostability and substrate specificity of F32EG5. The sugar chain showed a sharp bend in the complex structure, suggesting that a substrate cleft fitting to the bent sugar chains in lichenan is a common feature of GH5 lichenases. The mechanism of thermostability and substrate selectivity of F32EG5 was further demonstrated by molecular dynamics simulation and site-directed mutagenesis. These results provide biochemical and structural insights into thermostability and substrate selectivity of GH5 lichenases, which have potential in industrial processes.


Yeast ◽  
1988 ◽  
Vol 4 (2) ◽  
pp. 143-148 ◽  
Author(s):  
Cornelis Verduyn ◽  
Guido J. Breedveld ◽  
W. Alexander Scheffers ◽  
Johnnes P. Van Dijken

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 1002 ◽  
Author(s):  
Chunmeng Xu ◽  
Lingjun Tang ◽  
Youxiang Liang ◽  
Song Jiao ◽  
Huimin Yu ◽  
...  

For large-scale bioproduction, thermal stability is a crucial property for most industrial enzymes. A new method to improve both the thermal stability and activity of enzymes is of great significance. In this work, the novel chaperones RrGroEL and RrGroES from Rhodococcus ruber, a nontypical actinomycete with high organic solvent tolerance, were evaluated and applied for thermal stability and activity enhancement of a model enzyme, nitrilase. Two expression strategies, namely, fusion expression and co-expression, were compared in two different hosts, E. coli and R. ruber. In the E. coli host, fusion expression of nitrilase with either RrGroES or RrGroEL significantly enhanced nitrilase thermal stability (4.8-fold and 10.6-fold, respectively) but at the expense of enzyme activity (32–47% reduction). The co-expression strategy was applied in R. ruber via either a plasmid-only or genome-plus-plasmid method. Through integration of the nitrilase gene into the R. ruber genome at the site of nitrile hydratase (NHase) gene via CRISPR/Cas9 technology and overexpression of RrGroES or RrGroEL with a plasmid, the engineered strains R. ruber TH3 dNHase::RrNit (pNV18.1-Pami-RrNit-Pami-RrGroES) and TH3 dNHase::RrNit (pNV18.1-Pami-RrNit-Pami-RrGroEL) were constructed and showed remarkably enhanced nitrilase activity and thermal stability. In particular, the RrGroEL and nitrilase co-expressing mutant showed the best performance, with nitrilase activity and thermal stability 1.3- and 8.4-fold greater than that of the control TH3 (pNV18.1-Pami-RrNit), respectively. These findings are of great value for production of diverse chemicals using free bacterial cells as biocatalysts.


2014 ◽  
Vol 99 ◽  
pp. 68-78 ◽  
Author(s):  
Emil Hamnevik ◽  
Cecilia Blikstad ◽  
Sara Norrehed ◽  
Mikael Widersten

Extremophiles ◽  
2009 ◽  
Vol 13 (5) ◽  
pp. 751-761 ◽  
Author(s):  
Angela Pennacchio ◽  
Luciana Esposito ◽  
Adriana Zagari ◽  
Mosè Rossi ◽  
Carlo A. Raia

Sign in / Sign up

Export Citation Format

Share Document