rhodococcus ruber
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 33)

H-INDEX

27
(FIVE YEARS 4)

2021 ◽  
Vol 225 ◽  
pp. 112789
Author(s):  
Jing Liu ◽  
Ai-Ning Zhang ◽  
Yong-Jun Liu ◽  
Zhe Liu ◽  
Yu Liu ◽  
...  
Keyword(s):  

Author(s):  
Reid A. Simmer ◽  
Patrick M. Richards ◽  
Jessica M. Ewald ◽  
Cory Schwarz ◽  
Marcio L. B. da Silva ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Viktor Varga ◽  
Vladimír Štefuca ◽  
Lenka Mihálová ◽  
Zdenko Levarski ◽  
Eva Struhárňanská ◽  
...  

The aim of this study was to develop immobilized enzyme systems that reduce carbonyl compounds to their corresponding alcohols. The demand for natural aromas and food additives has been constantly growing in recent years. However, it can no longer be met by extraction and isolation from natural materials. One way to increase the availability of natural aromas is to prepare them by the enzymatic transformation of suitable precursors. Recombinant enzymes are currently being used for this purpose. We investigated trans-2-hexenal bioreduction by recombinant Saccharomyces cerevisiae alcohol dehydrogenase (ScADH1) with simultaneous NADH regeneration by recombinant Candida boidinii formate dehydrogenase (FDH). In a laboratory bioreactor with two immobilized enzymes, 88% of the trans-2-hexenal was transformed to trans-2-hexenol. The initial substrate concentration was 3.7 mM. The aldehyde destabilized ScADH1 by eluting Zn2+ ions from the enzyme. A fed-batch operation was used and the trans-2-hexenal concentration was maintained at a low level to limit the negative effect of Zn2+ ion elution from the immobilized ScADH1. Another immobilized two-enzyme system was used to reduce acetophenone to (S)-1-phenylethanol. To this end, the recombinant alcohol dehydrogenase (RrADH) from Rhodococcus ruber was used. This biocatalytic system converted 61% of the acetophenone to (S)-1-phenylethanol. The initial substrate concentration was 8.3 mM. All enzymes were immobilized by poly-His tag to Ni2+, which formed strong but reversible bonds that enabled carrier reuse after the loss of enzyme activity.


2021 ◽  
Vol 9 (6) ◽  
pp. 1171
Author(s):  
Sara Baldanta ◽  
Juana María Navarro Llorens ◽  
Govinda Guevara

The biochemistry and genetics of the bacterial steroid catabolism have been extensively studied during the last years and their findings have been essential to the development of biotechnological applications. For instance, metabolic engineering of the steroid-eater strains has allowed to obtain intermediaries of industrial value. However, there are still some drawbacks that must be overcome, such as the redundancy of the steroid catabolism genes in the genome and a better knowledge of its genetic regulation. KshABs and KstDs are key enzymes involved in the aerobic breakage of the steroid nucleus. Rhodococcus ruber Chol-4 contains three kshAs genes, a single kshB gene and three kstDs genes within its genome. In the present work, the growth of R. ruber ΔkshA strains was evaluated on different steroids substrates; the promoter regions of these genes were analyzed; and their expression was followed by qRT-PCR in both wild type and ksh mutants. Additionally, the transcription level of the kstDs genes was studied in the ksh mutants. The results show that KshA2B and KshA1B are involved in AD metabolism, while KshA3B and KshA1B contribute to the cholesterol metabolism in R. ruber. In the kshA single mutants, expression of the remaining kshA and kstD genes is re-organized to survive on the steroid substrate. These data give insight into the fine regulation of steroid genes when several isoforms are present.


2021 ◽  
Vol 28 ◽  
Author(s):  
Xin Fan ◽  
Yuan Yuan ◽  
Fan Zhang ◽  
Lei Ai ◽  
Zhonghao Wu ◽  
...  

Background: : Heat shock proteins (HSPs) represent a group of important proteins which are produced by all kinds of organisms especially under stressful conditions. DnaK, an Hsp70 homolog in prokaryotes, has indispensable roles when microbes was confronted with stress conditions. However, few data on DnaK from Rhodococcus sp. were available in the literature. In a previous study, we reported that toluene and phenol stress gave rise to a 29.87-fold and 3.93-fold increase for the expression of DnaK from R. ruber SD3, respectively. Thus, we deduced DnaK was in correlation with the organic solvent tolerance of R. ruber SD3. Objective: To elucidate the role of DnaK in the organic solvent tolerance of R. ruber SD3, expression, purification and functional analysis of Dnak from R. ruber SD3 were performed in the present paper. Methods: In this article, DnaK from R. ruber SD3 was heterologously expressed in E. coli BL21(DE3) and purified by affinity chromatography. Functional analysis of DnaK was performed using determination of kinetics, docking, assay of chaperone activity and microbial growth. Results: The recombinant DnaK was rapidly purified by affinity chromatography with the purification fold of 1.9 and the recovery rate of 57.9%. Km, Vmax and Kcat for Dnak from R. ruber SD3 were 80.8 μM, 58.1 nmol/min and 374.3 S-1, respectively. The recombinant protein formed trimer in vitro, with the calculated molecular weight of 214 kDa. According to In-silico analysis, DnaK interacted with other molecular chaperones and some important proteins in the metabolism. The specific activity of catalase in the presence of recombinant DnaK was 1.85 times or 2.00 times that in the presence of BSA or Tris-HCl buffer after exposure to 54 °C for 1h. E. coli transformant with pET28-dnak showed higher growth than E. coli transformant with pET28 at 43°C and in the presence of phenol, respectively. Conclusion: The biochemical properties and the interaction analysis of DnaK from R. ruber SD3 deepened our understanding of DnaK function. DnaK played an important role in microbial growth when R. ruber was subjected to various stress such as heating and organic solvent.


2021 ◽  
Author(s):  
Luca Schmermund ◽  
Susanne Reischauer ◽  
Sarah Bierbaumer ◽  
Christoph Winkler ◽  
Alba Diaz-Rodriguez ◽  
...  

<a></a><a></a><a></a><a></a><a></a><a>Controlling the selectivity of a chemical reaction with external stimuli is common in thermal processes, but rare in visible-light photocatalysis. Here we show that the redox potential of a carbon nitride photocatalyst (CN-OA-m) can be tuned by changing the irradiation wavelength to generate electron holes with different oxidation potentials. This tuning was the key to realizing photo-chemo-enzymatic cascades that give either the (<i>S</i>)- or the (<i>R</i>)-enantiomer of phenylethanol. In combination with an unspecific peroxygenase from <i>Agrocybe aegerita,</i> green light irradiation of CN-OA-m led to the enantioselective hydroxylation of ethylbenzene to (<i>R</i>)-1-phenylethanol (99% <i>ee</i>). In contrast, blue light irradiation triggered the photocatalytic oxidation of ethylbenzene to acetophenone, which in turn was enantioselectively reduced with an alcohol dehydrogenase from <i>Rhodococcus ruber </i>to form<i> </i>(<i>S</i>)-1-phenylethanol (93% <i>ee</i>).</a><a></a>


2021 ◽  
Author(s):  
Luca Schmermund ◽  
Susanne Reischauer ◽  
Sarah Bierbaumer ◽  
Christoph Winkler ◽  
Alba Diaz-Rodriguez ◽  
...  

<a></a><a></a><a></a><a></a><a></a><a>Controlling the selectivity of a chemical reaction with external stimuli is common in thermal processes, but rare in visible-light photocatalysis. Here we show that the redox potential of a carbon nitride photocatalyst (CN-OA-m) can be tuned by changing the irradiation wavelength to generate electron holes with different oxidation potentials. This tuning was the key to realizing photo-chemo-enzymatic cascades that give either the (<i>S</i>)- or the (<i>R</i>)-enantiomer of phenylethanol. In combination with an unspecific peroxygenase from <i>Agrocybe aegerita,</i> green light irradiation of CN-OA-m led to the enantioselective hydroxylation of ethylbenzene to (<i>R</i>)-1-phenylethanol (99% <i>ee</i>). In contrast, blue light irradiation triggered the photocatalytic oxidation of ethylbenzene to acetophenone, which in turn was enantioselectively reduced with an alcohol dehydrogenase from <i>Rhodococcus ruber </i>to form<i> </i>(<i>S</i>)-1-phenylethanol (93% <i>ee</i>).</a><a></a>


2020 ◽  
Vol 11 ◽  
Author(s):  
Hui Huang ◽  
Minbo Qi ◽  
Yiming Liu ◽  
Haixia Wang ◽  
Xuejun Wang ◽  
...  

Tetrahydrofuran (THF) is a universal solvent widely used in the synthesis of chemicals and pharmaceuticals. As a refractory organic contaminant, it can only be degraded by a small group of microbes. In this study, a thiamine auxotrophic THF-degrading bacterium, Rhodococcus ruber ZM07, was isolated from an enrichment culture H-1. It was cocultured with Escherichia coli K12 (which cannot degrade THF but can produce thiamine) and/or Escherichia coli K12ΔthiE (which can neither degrade THF nor produce thiamine) with or without exogenous thiamine. This study aims to understand the interaction mechanisms between ZM07 and K12. We found that K12 accounted for 30% of the total when cocultured and transferred with ZM07 in thiamine-free systems; in addition, in the three-strain (ZM07, K12, and K12ΔthiE) cocultured system without thiamine, K12ΔthiE disappeared in the 8th transfer, while K12 could still stably exist (the relative abundance remained at approximately 30%). The growth of K12 was significantly inhibited in the thiamine-rich system. Its proportion was almost below 4% after the fourth transfer in both the two-strain (ZM07 and K12) and three-strain (ZM07, K12, and K12ΔthiE) systems; K12ΔthiE’s percentage was higher than K12’s in the three-strain (ZM07, K12, and K12ΔthiE) cocultured system with exogenous thiamine, and both represented only a small proportion (less than 1% by the fourth transfer). The results of the coculture of K12 and K12ΔthiE in thiamine-free medium indicated that intraspecific competition between them may be one of the main reasons for the extinction of K12ΔthiE in the three-strain (ZM07, K12, and K12ΔthiE) system without exogenous thiamine. Furthermore, we found that ZM07 could cooperate with K12 through extracellular metabolites exchanges without physical contact. This study provides novel insight into how microbes cooperate and compete with one another during THF degradation.


Sign in / Sign up

Export Citation Format

Share Document