Highly active mesoporous chromium silicate catalysts in side-chain oxidation of alkylaromatics

2012 ◽  
Vol 41 (46) ◽  
pp. 14204 ◽  
Author(s):  
M. Selvaraj ◽  
D.-W. Park ◽  
I. Kim ◽  
S. Kawi ◽  
C. S. Ha
1980 ◽  
Vol 255 (4) ◽  
pp. 1483-1485
Author(s):  
R.F. Hanson ◽  
P. Szczepanik-Van Leeuwen ◽  
G.C. Williams
Keyword(s):  

2000 ◽  
Vol 47 (1) ◽  
pp. 47-57 ◽  
Author(s):  
J Mazerski ◽  
I Antonini ◽  
S Martelli

Pyrimidoacridinetriones (PATs) are a new group of highly active antitumor compounds. It seems reasonable to assume that, like for some other acridine derivatives, intercalation into DNA is a necessary, however not a sufficient condition for antitumor activity of these compounds. Rational design of new compounds of this chemotype requires knowledge about the structure of the intercalation complex, as well as about interactions responsible for its stability. Computer simulation techniques such as molecular dynamics (MD) may provide valuable information about these problems. The results of MD simulations performed for three rationally selected PATs are presented in this paper. The compounds differ in the number and position of side chains. Each of the compounds was simulated in two systems: i) in water, and ii) in the intercalation complex with the dodecamer duplex d(GCGCGCGCGCGC)2. The orientation of the side chain in relation to the ring system is determined by the position of its attachment. Orientation of the ring system inside the intercalation cavity depends on the number and position of side chain(s). The conformations of the side chain(s) of all PATs studied in the intercalation complex were found to be very similar to those observed in water.


2000 ◽  
Vol 47 (1) ◽  
pp. 65-78 ◽  
Author(s):  
J Mazerski ◽  
K Muchewicz

Imidazoacridinones (IAs) are a new group of highly active antitumor compounds. The intercalation of the IA molecule into DNA is the preliminary step in the mode of action of these compounds. There are no experimental data about the structure of an intercalation complex formed by imidazoacridinones. Therefore the design of new potentially better compounds of this group should employ the molecular modelling techniques. The results of molecular dynamics simulations performed for four IA analogues are presented. Each of the compounds was studied in two systems: i) in water, and ii) in the intercalation complex with dodecamer duplex d(GCGCGCGCGCGC)2. Significant differences in the conformation of the side chain in the two environments were observed for all studied IAs. These changes were induced by electrostatic as well as van der Waals interactions between the intercalator and DNA. Moreover, the results showed that the geometry of the intercalation complex depends on: i) the chemical constitution of the side chain, and ii) the substituent in position 8 of the ring system.


2021 ◽  
Vol 18 ◽  
Author(s):  
Sarah Kappler ◽  
Andreas Siebert ◽  
Uli Kazmaier

Introduction: Miuraenamides belong to marine natural compounds with interesting biological properties. Materials and Methods: They initiate polymerization of monomeric actin and therefore show high cytotoxicity by influencing the cytoskeleton. New derivatives of the miuraenamides have been synthesized containing a N-methylated amide bond instead of the more easily hydrolysable ester in the natural products. Results: Incorporation of an aromatic side chain onto the C-terminal amino acid of the tripeptide fragment also led to highly active new miuraenamides. Conclusion: We could show that the ester bond of the natural product miuraenamide can be replaced by an N-methyl amide. The yields in the cyclization step are high and generally much better that with the corresponding esters. On the other hand, the biological activity of the new amide analogs are lower compared to the natural products, but the activity can significantly be increased by incorporation of a p-nitrophenyl group at the C-terminus of the peptide fragment.


1996 ◽  
Vol 51 (3-4) ◽  
pp. 297-301 ◽  
Author(s):  
F. Bohnenstengel ◽  
U. Hofmann ◽  
M. Eichelbaum ◽  
H. K. Kroemer

Sign in / Sign up

Export Citation Format

Share Document