scholarly journals Density functional theory calculations of XPS binding energy shift for nitrogen-containing graphene-like structures

2013 ◽  
Vol 49 (25) ◽  
pp. 2539 ◽  
Author(s):  
K. Artyushkova ◽  
B. Kiefer ◽  
B. Halevi ◽  
A. Knop-Gericke ◽  
R. Schlogl ◽  
...  
2005 ◽  
Vol 864 ◽  
Author(s):  
Scott A. Harrison ◽  
Thomas F. Edgar ◽  
Gyeong S. Hwang

AbstractBased on first principles density functional theory calculations, we identify the structure and diffusion pathway for a fluorine-silicon interstitial complex (F-Sii). We find the F-Sii complex to be most stable in the singly positive charge state at all Fermi leVels. At mid-gap, the complex is found to have a binding energy of 1.08 eV relative to bond-centered F+ and (110)-split Sii. We find the F-Sii complex has an overall migration barrier of 0.76 eV, which suggests that this complex may play an important role in fluorine diffusion. Our results should lead to more accurate models that describe the behavior of fluorine co-implants crystalline silicon.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 543
Author(s):  
Golibjon. R. Berdiyorov ◽  
Mohamed E. Madjet ◽  
Khaled. A. Mahmoud

The properties of two-dimensional (2D) layered membrane systems can be medullated by the stacking arrangement and the heterostructure composition of the membrane. This largely affects the performance and stability of such membranes. Here, we have used first-principle density functional theory calculations to conduct a comparative study of two heterostructural bilayer systems of the 2D-MXene (Ti3C2T2, T = F, O, and OH) sheets with graphene and silver nanoparticles (AgNPs). For all considered surface terminations, the binding energy of the MXene/graphene and MXene/AgNPs bilayers increases as compared with graphene/graphene and MXene/MXene bilayer structures. Such strong interlayer interactions are due to profound variations of electrostatic potential across the layers. Larger interlayer binding energies in MXene/graphene systems were obtained even in the presence of water molecules, indicating enhanced stability of such a hybrid system against delamination. We also studied the structural properties of Ti3C2X2 MXene (X = F, O and OH) decorated with silver nanoclusters Agn (n ≤ 6). We found that regardless of surface functionalization, Ag nanoclusters were strongly adsorbed on the surface of MXene. In addition, Ag nanoparticles enhanced the binding energy between MXene layers. These findings can be useful in enhancing the structural properties of MXene membranes for water purification applications.


2016 ◽  
Vol 18 (19) ◽  
pp. 13280-13286 ◽  
Author(s):  
Maolin Bo ◽  
Yongling Guo ◽  
Yan Wang ◽  
Yonghui Liu ◽  
Cheng Peng ◽  
...  

We examined the effects of atomic hetero- and under-coordination on the relaxation of the interatomic bonding and electronic binding energy of Li and LiNa cluster alloying using a combination of the bond-order-length-strength correlation and density functional theory calculations.


2013 ◽  
Vol 91 (12) ◽  
pp. 1101-1106 ◽  
Author(s):  
Sherin A. Saraireh ◽  
Mohammednoor Altarawneh

Interaction of water with Cu2O has many prominent industrial and environmental applications. This study represents detailed density-functional theory calculations investigating the adsorption of a water molecule on a Cu2O(110):CuO surface; one of the two most stable Cu2O surfaces under practical catalytic conditions of temperatures and pressures. We report herein structural geometries and binding energies for all plausible molecular and dissociative interaction of H2O with the surface. The water molecule is found to interact weakly with the Cu2O(110):CuO surface, forming several vertical and flat orientations where the latter was found to offer the most preferred site with a binding energy at 0.389 eV. Dissociation of a water molecule on this surface is found to incur a modest endothermcity of 0.71 eV.


2006 ◽  
Vol 71 (11-12) ◽  
pp. 1525-1531 ◽  
Author(s):  
Wojciech Grochala

The enthalpy of four polymorphs of CaN has been scrutinized at 0 and 100 GPa using density functional theory calculations. It is shown that structures of diamagnetic calcium diazenide (Ca2N2) are preferred over the cubic ferromagnetic polymorph (CaN) postulated before, both at 0 and 100 GPa.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chih-Chuen Lin ◽  
Phani Motamarri ◽  
Vikram Gavini

AbstractWe present a tensor-structured algorithm for efficient large-scale density functional theory (DFT) calculations by constructing a Tucker tensor basis that is adapted to the Kohn–Sham Hamiltonian and localized in real-space. The proposed approach uses an additive separable approximation to the Kohn–Sham Hamiltonian and an L1 localization technique to generate the 1-D localized functions that constitute the Tucker tensor basis. Numerical results show that the resulting Tucker tensor basis exhibits exponential convergence in the ground-state energy with increasing Tucker rank. Further, the proposed tensor-structured algorithm demonstrated sub-quadratic scaling with system-size for both systems with and without a gap, and involving many thousands of atoms. This reduced-order scaling has also resulted in the proposed approach outperforming plane-wave DFT implementation for systems beyond 2000 electrons.


2021 ◽  
Vol 60 (8) ◽  
pp. 6016-6026
Author(s):  
Aydar Rakhmatullin ◽  
Maxim S. Molokeev ◽  
Graham King ◽  
Ilya B. Polovov ◽  
Konstantin V. Maksimtsev ◽  
...  

Author(s):  
Lijuan Meng ◽  
Jinlian Lu ◽  
Yujie Bai ◽  
Lili Liu ◽  
Tang Jingyi ◽  
...  

Understanding the fundamentals of chemical vapor deposition bilayer graphene growth is crucial for its synthesis. By employing density functional theory calculations and classical molecular dynamics simulations, we have investigated the...


Sign in / Sign up

Export Citation Format

Share Document