Selective gas adsorption and unique phase transition properties in a stable magnesium metal-organic framework constructed from infinite metal chains

CrystEngComm ◽  
2013 ◽  
Vol 15 (45) ◽  
pp. 9688 ◽  
Author(s):  
Yangyang Liu ◽  
Ying-Pin Chen ◽  
Tian-Fu Liu ◽  
Andrey A. Yakovenko ◽  
Aaron M. Raiff ◽  
...  
2012 ◽  
Vol 51 (9) ◽  
pp. 4947-4953 ◽  
Author(s):  
Zhangjing Zhang ◽  
Shengchang Xiang ◽  
Kunlun Hong ◽  
Madhab, C. Das ◽  
Hadi D. Arman ◽  
...  

2007 ◽  
Vol 443 (4-6) ◽  
pp. 293-297 ◽  
Author(s):  
Takahiro Ueda ◽  
Kenji Kurokawa ◽  
Hiroaki Omichi ◽  
Keisuke Miyakubo ◽  
Taro Eguchi

2016 ◽  
Vol 52 (14) ◽  
pp. 3003-3006 ◽  
Author(s):  
Linyi Bai ◽  
Binbin Tu ◽  
Yi Qi ◽  
Qiang Gao ◽  
Dong Liu ◽  
...  

Incorporating supramolecular recognition units, crown ether rings, into metal–organic frameworks enables the docking of metal ions through complexation for enhanced performance.


2017 ◽  
Vol 24 (4) ◽  
pp. 865-871 ◽  
Author(s):  
Yong-Zhi Li ◽  
Hai-Hua Wang ◽  
Hong-Yun Yang ◽  
Lei Hou ◽  
Yao-Yu Wang ◽  
...  

2019 ◽  
Vol 203 ◽  
pp. 415-422 ◽  
Author(s):  
Shanshan Ma ◽  
Meiyun Zhang ◽  
Jingyi Nie ◽  
Jiaojun Tan ◽  
Bin Yang ◽  
...  

CrystEngComm ◽  
2021 ◽  
Author(s):  
Yu-Jie Liang ◽  
Jun Yao ◽  
Ming Deng ◽  
Yan-E Liu ◽  
Quan-Qing Xu ◽  
...  

A three-dimensional (3D) metal-organic framework [(CH3)2NH2][Zn2(DMTDC)2(3-mtz)]•4DMF•3H2O (Zn-MOF) has been solvothermally synthesized by using mixed ligands of 3-methyl-1,2,4-triazole (3-Hmtz) and a thiophene-functionalized dicarboxylate ligand, 3,4-dimethylthieno[2,3-b]thiophene-2,5-dicarboxylic acid (H2DMTDC). Zn-MOF exhibits a uninodal...


2019 ◽  
Vol 48 (1) ◽  
pp. 278-284 ◽  
Author(s):  
Dongmei Wang ◽  
Zihua Liu ◽  
Lili Xu ◽  
Chunxia Li ◽  
Dian Zhao ◽  
...  

Porous In/Tb-CBDA has been successfully synthesized in the light of the heterometallic cooperative crystallization (HCC) approach. In/Tb-CBDA with high thermal and chemical stability exhibited high performance for gas storage and separation.


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 810
Author(s):  
Mikhail V. Kirichkov ◽  
Aram L. Bugaev ◽  
Alina A. Skorynina ◽  
Vera V. Butova ◽  
Andriy P. Budnyk ◽  
...  

The formation of palladium hydrides is a well-known phenomenon, observed for both bulk and nanosized samples. The kinetics of hydrogen adsorption/desorption strongly depends on the particle size and shape, as well as the type of support and/or coating of the particles. In addition, the structural properties of hydride phases and their distribution also depend on the particle size. In this work, we report on the in situ characterization of palladium nanocubes coated with HKUST-1 metal-organic framework (Pd@HKUST-1) during desorption of hydrogen by means of synchrotron-based time-resolved X-ray powder diffraction. A slower hydrogen desorption, compared to smaller sized Pd nanoparticles was observed. Rietveld refinement of the time-resolved data revealed the remarkable stability of the lattice parameters of α- and β-hydride phases of palladium during the α- to β- phase transition, denoting the behavior more similar to the bulk materials than nanoparticles. The stability in the crystal sizes for both α- and β-hydride phases during the phase transition indicates that no sub-domains are formed within a single particle during the phase transition.


Sign in / Sign up

Export Citation Format

Share Document