Direct two-phase interfacial self-assembly of aligned silver nanowire films for surface enhanced Raman scattering applications

2013 ◽  
Vol 1 (43) ◽  
pp. 13496 ◽  
Author(s):  
Changfeng Chen ◽  
Jumin Hao ◽  
Leyun Zhu ◽  
Yuqin Yao ◽  
Xiaoguang Meng ◽  
...  
2014 ◽  
Vol 1659 ◽  
pp. 219-224
Author(s):  
Changfeng Chen ◽  
Jumin Hao ◽  
Leyun Zhu ◽  
Yuqin Yao ◽  
Qingwu Wang

ABSTRACTAssembly of nanowires into ordered macroscopic structures has attracted great scientific interests in the past decade. In this work, we report a rapid low-cost scalable oil-water interfacial self assembly process for fabricating aligned Ag nanowires (AgNWs) films on solid substrates. This process is much simpler than the traditional Langmuir-Blodgett (LB) techniques and allows the assembly of one–dimensional Ag nanowires onto any solid substrates without extra pretreatment of the surface of silver nanowires or the solid substrate. The present aligned AgNW films can serve as robust surface-enhanced Raman scattering (SERS) sensors for chemical and bimolecular detection with improved spectra quality and demonstrated uniformity of SERS signal using R6G dye as probe.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Abeer Alyami ◽  
Antonio Mirabile ◽  
Daniela Iacopino

Abstract Surface Enhanced Raman Scattering (SERS) has become an invaluable tool for the identification of colorants in artworks, due to its enhanced sensitivity and ability to quench fluorescence interference compared to Raman spectroscopy. However, the application of SERS to artwork analysis is still limited by its inherent invasiveness and the need for extraction procedures. In this work non-invasive transparent SERS probes were fabricated by self-assembly of Ag nanoparticles into glass and PDMS surfaces and used for identification of dye content in artistic drawings. SERS measurements were performed directly on the selected analytical surfaces by laser back illumination through the SERS probe. The non-invasiveness of fabricated probes was tested by optical microscopy. It was found that Ag nanoparticle/glass probes left no Ag nanoparticle residue after four consecutive depositions on sacrificial surfaces, whereas Ag nanoparticle/PDMS composites could be deposited and subsequently peeled off the analytical surfaces leaving no contamination traces. The high conformability, flexibility and transparency of Ag nanoparticle/PDMS composites enabled good adhesion to the surface of analyzed artistic drawings and therefore the generation of in situ SERS spectra from artistic drawings. The use of this method allowed identification of main dye components in real artworks comprising a red BIC ballpoint drawing and a Japanese woodblock print.


2009 ◽  
Vol 7 (3) ◽  
pp. 446-453 ◽  
Author(s):  
Mamdouh Abdelsalam

AbstractIn this paper we describe the use of a simple and versatile technique of templated electrodeposition through polystyrene sphere templates to produce nanostructured films of gold with regular submicron spherical holes arranged in a hexagonal close-packed structure. The templates were produced by self assembly of a monodispersed suspension of polystyrene spheres on gold substrates using capillary forces. The self assembly process was modified through the chemical modification of the gold substrate with cysteamine thiol. Films of gold were prepared by electrochemical deposition through the template. The electrochemical deposition charge and the current time curve were used to control the film height with a precision of approximately 10 nm. The colour of the nanostructured films changed as the film thickness was changed. Surface enhanced Raman Scattering spectra were recorded and used to identify very low concentrations of aromatic thiol molecules, 4-Nitrobenzenethiol (4-NBT) and 4-Aminobenzenethiol (4-ABT), adsorbed on the surface of the nanostructured gold substrates.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Chuyun Deng ◽  
Wanyun Ma ◽  
Jia-Lin Sun

Raman scattering signals can be enhanced by several orders of magnitude on surface-enhanced Raman scattering (SERS) substrates made from noble metal nanostructures. Some SERS substrates are even able to detect single-molecule Raman signals. A novel silver nanobud (AgNB) substrate with superior SERS activity was fabricated with a solid-state ionics method. The AgNB substrate was formed by tightly collocated unidirectional 100 nm size silver buds, presenting a highly rough surface topography. Distinct SERS signals of singleλ-DNA molecules in water were detected on AgNB substrates. AgNB substrates were compared with disordered silver nanowire (AgNW) substrates manufactured by the same method through the SERS detection ofλ-DNA solutions. This original AgNB substrate provides a reliable approach towards trace analysis of biomacromolecules and promotes the utilization of the SERS technique in biomedical research.


Sign in / Sign up

Export Citation Format

Share Document