The grab-and-drop protocol: a novel strategy for membrane protein isolation and reconstitution from single cells

The Analyst ◽  
2014 ◽  
Vol 139 (13) ◽  
pp. 3296-3304 ◽  
Author(s):  
Angelika Schrems ◽  
John Phillips ◽  
Duncan Casey ◽  
Douglas Wylie ◽  
Mira Novakova ◽  
...  

Samples of cell membrane were non-destructively removed from individual, live cells using optically trapped beads, and deposited into a supported lipid bilayer mounted on an S-layer protein-coated substrate.

ACS Omega ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 6059-6067 ◽  
Author(s):  
Huxiang Guo ◽  
Qiguo Xing ◽  
Renliang Huang ◽  
Dong Woog Lee ◽  
Rongxin Su ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3900-3900
Author(s):  
Xiaoxuan Cui ◽  
Lu Zhang ◽  
Amanda R Magli ◽  
Rosa Catera ◽  
Jonathan E Kolitz ◽  
...  

Abstract Abstract 3900 Many monoclonal antibodies (mAbs) produced by B-cell chronic lymphocytic leukemia (CLL) cells bind a subset of apoptotic cells that expose intracellular myosin on the cell surface. CLL patients with mAbs that bind these myosin-exposed apoptotic cells (MEACs) have shorter overall survival. Thus, understanding the mechanism of formation of MEACs and how CLL cells interact with MEACs may help elucidate the pathogenesis of CLL. To test if formation of MEACs is part of general apoptotic mechanisms, apoptosis was induced in Jurkat T cells by either the intrinsic or extrinsic pathways. The intrinsic pathway was either achieved spontaneously by culturing at high cell density or induced by camptothecin (CPT) treatment. The extrinsic pathway was induced by Fas ligand (FasL) or anti-Fas mAb treatment. Apoptosis and myosin exposition were analyzed by flow cytometry. All four methods of apoptosis induction produced MEACs after prolonged incubation as detailed below. CPT, FasL or anti-Fas mAb incubation for 4 hrs induced significant apoptosis (43-58%) with a detectable fraction of MEACs (9-12%). After incubation for 16 hrs or longer, the majority of apoptotic cells were MEACs (61-89%). Similarly, spontaneous apoptosis produced more MEACs after longer incubation (20% on day 1 versus 59–69% on days 2–4). Both early apoptotic cells, which flip phosphatidylserine (PS) from the inner to outer membrane surface yet retain membrane integrity (AnnexinV+, 7-actinomycin D (7AAD)-), and late apoptotic cells, which become membrane permeable (AnnexinV+, 7AAD+), demonstrate a subpopulation of MEACs that increases with longer incubation times. In contrast, MEACs are not detectable in non-apoptotic cells (AnnexinV-, 7AAD-). Thus, both intrinsic and extrinsic apoptotic pathways lead to MEAC formation, suggesting that a common downstream mediator may be involved. Caspase-3 activation mediates apoptotic PS exposure and membrane permeability. Therefore, we tested a caspase-3 inhibitor, Z-DEVD-FMK, and found that it significantly reduced both apoptosis and MEAC formation. For example, Z-DEVD-FMK reduced FasL induced apoptosis and MEAC formation from 74 to 14% and from 57 to 10%, respectively. In contrast, caspase-1 inhibitor, Z-YVAD-FMK, had no effect. To test if intracellular myosin is transferred from the cytoplasm to the cell membrane surface during apoptosis, cytoplasmic and membrane protein extracts were prepared, isolated by ultracentrifugation, and blotted with anti-myosin antibody. Two protein bands of the size expected for caspase-3 cleaved myosin (149 and 94 kDa) appeared in membrane extracts of apoptotic cells, but not of live cells. A protein band of the size expected for full-length myosin (250 kDa) predominated in cytoplasmic extracts of live cells. Furthermore, Z-DEVD-FMK inhibited the formation of the 149 and 94 kDa myosin bands in membrane extracts as well as the formation of caspase-3 dependant PARP cleavage products; the same treatment did not alter CD3 membrane protein or GAPDH cytoplasmic protein levels. Taken together, these results suggest that both intrinsic and extrinsic apoptotic pathways produce MEACs at a later stage in apoptosis that involves the common downstream caspase-3 activation. In turn, myosin fragmentation occurs with subsequent exposure to the cell membrane, where the myosin fragments can serve as a potential neoantigen that may be recognized by some CLL mAbs. Because the mAbs we have used in these analyses were originally integral components of CLL surface membranes, we hypothesized that CLL cells could bind MEACs. Indeed, CLL cells binding to MEACs were visualized by confocal microscopy. To determine the functional consequences of such binding, analyses of the effects of MEAC binding on CLL cell survival in vitro are underway. Disclosures: No relevant conflicts of interest to declare.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Victoria L. Jeter ◽  
Jorge C. Escalante-Semerena

ABSTRACT Cobamides are cobalt-containing cyclic tetrapyrroles used by cells from all domains of life but only produced de novo by some bacteria and archaea. The “late steps” of the adenosylcobamide biosynthetic pathway are responsible for the assembly of the nucleotide loop and are required during de novo synthesis and precursor salvaging. These steps are characterized by activation of the corrin ring and lower ligand base, condensation of the activated precursors to adenosylcobamide phosphate, and removal of the phosphate, yielding a complete adenosylcobamide molecule. The condensation of the activated corrin ring and lower ligand base is performed by an integral membrane protein, cobamide (5′ phosphate) synthase (CobS), and represents an important convergence of two pathways necessary for nucleotide loop assembly. Interestingly, membrane association of this penultimate step is conserved among all cobamide producers, yet the physiological relevance of this association is not known. Here, we present the purification and biochemical characterization of the CobS enzyme of the enterobacterium Salmonella enterica subsp. enterica serovar Typhimurium strain LT2, investigate its association with liposomes, and quantify the effect of the lipid bilayer on its enzymatic activity and substrate affinity. We report a purification scheme that yields pure CobS protein, allowing in vitro functional analysis. Additionally, we report a method for liposome reconstitution of CobS, allowing for physiologically relevant studies of this inner membrane protein in a phospholipid bilayer. In vitro and in vivo data reported here expand our understanding of CobS and the implications of membrane-associated adenosylcobamide biosynthesis. IMPORTANCE Salmonella is a human pathogen of worldwide importance, and coenzyme B12 is critical for the pathogenic lifestyle of this bacterium. The importance of the work reported here lies on the improvements to the methodology used to isolate cobamide synthase, a polytopic integral membrane protein that catalyzes the penultimate step of coenzyme B12 biosynthesis. This advance is an important step in the analysis of the proposed multienzyme complex responsible for the assembly of the nucleotide loop during de novo coenzyme B12 biosynthesis and for the assimilation of incomplete corrinoids from the environment. We proposed that cobamide synthase is likely localized to the cell membrane of every coenzyme B12-producing bacterium and archaeum sequenced to date. The new knowledge of cobamide synthase advances our understanding of the functionality of the enzyme in the context of the lipid bilayer and sets the foundation for the functional-structural analysis of the aforementioned multienzyme complex.


ChemistryOpen ◽  
2016 ◽  
Vol 5 (5) ◽  
pp. 445-449 ◽  
Author(s):  
Anders Gunnarsson ◽  
Lisa Simonsson Nyström ◽  
Sabina Burazerovic ◽  
Jenny Gunnarsson ◽  
Arjan Snijder ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (76) ◽  
pp. 72821-72826 ◽  
Author(s):  
Xuejing Wang ◽  
Ying Zhang ◽  
Hongmei Bi ◽  
Xiaojun Han

Lipid bilayer arrays were formed on micropatterned ITO electrodes. With this bilayer array platform both the fluorescence microscopy and electrochemical detection can be realized to explore the biophysical properties of cell membrane.


1991 ◽  
Author(s):  
B. George Barisas ◽  
N. A. Rahman ◽  
Thomas Londo ◽  
J. R. Herman ◽  
Deborah A. Roess

Sign in / Sign up

Export Citation Format

Share Document