extrinsic apoptotic pathways
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 5)

H-INDEX

12
(FIVE YEARS 0)

Author(s):  
Jamie Z. Roberts ◽  
Nyree Crawford ◽  
Daniel B. Longley

AbstractCell death pathways have evolved to maintain tissue homoeostasis and eliminate potentially harmful cells from within an organism, such as cells with damaged DNA that could lead to cancer. Apoptosis, known to eliminate cells in a predominantly non-inflammatory manner, is controlled by two main branches, the intrinsic and extrinsic apoptotic pathways. While the intrinsic pathway is regulated by the Bcl-2 family members, the extrinsic pathway is controlled by the Death receptors, members of the tumour necrosis factor (TNF) receptor superfamily. Death receptors can also activate a pro-inflammatory type of cell death, necroptosis, when Caspase-8 is inhibited. Apoptotic pathways are known to be tightly regulated by post-translational modifications, especially by ubiquitination. This review discusses research on ubiquitination-mediated regulation of apoptotic signalling. Additionally, the emerging importance of ubiquitination in regulating necroptosis is discussed.


2021 ◽  
pp. 109734
Author(s):  
Fernanda Rodrigues Nascimento ◽  
Jefferson Viktor de Paula Barros Baeta ◽  
Andressa Antunes Prado França ◽  
Mariá Aparecida Braga Rocha e Oliveira ◽  
Virgínia Ramos Pizziolo ◽  
...  

APOPTOSIS ◽  
2021 ◽  
Author(s):  
Mei Li

AbstractP53 up-regulated modulator of apoptosis (PUMA), a pro-apoptotic BCL-2 homology 3 (BH3)-only member of the BCL-2 family, is a direct transcriptional target of P53 that elicits mitochondrial apoptosis under treatment with radiation and chemotherapy. It also induces excessive apoptosis in cardiovascular and/or neurodegenerative diseases. PUMA has been found to play a critical role in ovarian apoptosis. In the present paper, we review the progress of the study in PUMA over the past two decades in terms of its inducement and/or amplification of programmed cell death and describe recent updates to the understanding of both P53-dependent and P53-independent PUMA-mediated apoptotic pathways that are implicated in physiology and pathology, including the development of the ovary and cardiovascular and neurodegenerative diseases. We propose that PUMA may be a key regulator during ovary development, provide a model for PUMA-mediated apoptotic pathways, including intrinsic and extrinsic apoptotic pathways.


2021 ◽  
Vol 14 (3) ◽  
pp. 101006
Author(s):  
Md Masud Alam ◽  
Ryusho Kariya ◽  
Piyanard Boonnate ◽  
Azusa Kawaguchi ◽  
Seiji Okada

2018 ◽  
Vol 19 (12) ◽  
pp. 3999 ◽  
Author(s):  
Laura Lossi ◽  
Claudia Castagna ◽  
Adalberto Merighi

Caspase-3, onto which there is a convergence of the intrinsic and extrinsic apoptotic pathways, is the main executioner of apoptosis. We here review the current literature on the intervention of the protease in the execution of naturally occurring neuronal death (NOND) during cerebellar development. We will consider data on the most common altricial species (rat, mouse and rabbit), as well as humans. Among the different types of neurons and glia in cerebellum, there is ample evidence for an intervention of caspase-3 in the regulation of NOND of the post-mitotic cerebellar granule cells (CGCs) and Purkinje neurons, as a consequence of failure to establish proper synaptic contacts with target (secondary cell death). It seems possible that the GABAergic interneurons also undergo a similar type of secondary cell death, but the intervention of caspase-3 in this case still remains to be clarified in full. Remarkably, CGCs also undergo primary cell death at the precursor/pre-migratory stage of differentiation, in this instance without the intervention of caspase-3. Glial cells, as well, undergo a process of regulated cell death, but it seems possible that expression of caspase-3, at least in the Bergmann glia, is related to differentiation rather than death.


Author(s):  
Laura Lossi ◽  
Claudia Castagna ◽  
Adalberto Merighi

Caspase-3, onto which there is a convergence of the intrinsic and extrinsic apoptotic pathways, is the main executioner of apoptosis. We here review the current literature on the intervention of the protease in the execution of naturally occurring neuronal death (NOND) during cerebellar development. We will consider data on the most common altricial species (rat, mouse and rabbit), as well as humans. Among the different types of neurons and glia in cerebellum, there is ample evidence for an intervention of caspase-3 in the regulation of NOND of the post-mitotic cerebellar granule cells (CGCs) and Purkinje neurons as a consequence of failure to establish proper synaptic contacts with target (secondary cell death). It seems possible that also the GABAergic interneurons undergo a similar type of secondary cell death, but the intervention of caspase-3 in this case still remains to be clarified in full. Remarkably, CGCs also undergo primary cell death at the precursor/pre-migratory stage of differentiation, in this case without the intervention of caspase-3. Glial cells as well undergo a process of regulated cell death, but it seems possible that expression of caspase-3, at least in the Bergmann glia, is related to differentiation rather than death.


2018 ◽  
Vol 25 (1) ◽  
pp. 107327481875741 ◽  
Author(s):  
Kimberly L. Santucci ◽  
John M. Baust ◽  
Kristi K. Snyder ◽  
Robert G. Van Buskirk ◽  
John G. Baust

Vitamin D3 (VD3) is an effective adjunctive agent, enhancing the destructive effects of freezing in prostate cancer cryoablation studies. We investigated whether dose escalation of VD3 over several weeks, to model the increase in physiological VD3 levels if an oral supplement were prescribed, would be as or more effective than a single treatment 1 to 2 days prior to freezing. PC-3 cells in log phase growth to model aggressive, highly metabolically active prostate cancer were exposed to a gradually increasing dose of VD3 to a final dose of 80 nM over a 4-week period, maintained for 2 weeks at 80 nM, and then exposed to mild sublethal freezing temperatures. Results demonstrate that both acute 24-hour exposure to 80 nM VD3 and dose escalation resulted in enhanced cell death following freezing at −15°C or colder, with no significant differences between the 2 exposure regimes. Apoptotic analysis within the initial 24-hour period postfreeze revealed that VD3 treatment induced both caspase 8- and 9-mediated cell death, most notably in caspase 8 at 8-hour postfreeze. These results indicate that both the intrinsic and extrinsic apoptotic pathways are involved in VD3 sensitization prior to freezing. Additionally, both acute and gradual dose escalation regimes of VD3 exposure increase prostate cancer cell sensitivity to mild freezing. Importantly, this study expands upon previous reports and suggests that the combination of VD3 and freezing may offer an effective treatment for both slow growth and highly aggressive prostate cancers.


Sign in / Sign up

Export Citation Format

Share Document