Hydrogenation of levulinic acid to γ-valerolactone by Ni and MoOx co-loaded carbon catalysts

2014 ◽  
Vol 16 (8) ◽  
pp. 3899-3903 ◽  
Author(s):  
Ken-ichi Shimizu ◽  
Shota Kanno ◽  
Kenichi Kon

Ni–MoOx/C showed more than 300 times higher TON than previously reported noble metal-free catalysts for the title reaction.

2021 ◽  
Vol 9 ◽  
Author(s):  
Di Hu ◽  
Hong Xu ◽  
Zuotong Wu ◽  
Man Zhang ◽  
Zhiyue Zhao ◽  
...  

Developing a low-cost and robust catalyst for efficient transformation of biomass-derived platform chemicals plays a crucial role in the synthesis of future transportation fuels. Herein, a post-synthetic strategy was employed to develop a noble metal-free and robust ZrY zeolite catalyst, which is efficient for the hydrogenation of biomass-derived levulinic acid (LA) into biofuel γ-valerolactone (GVL), whereas over 95% yield of GVL was achieved in 10 h at 220°C. The effects of acidic properties from ZrY catalysts and various reaction parameters on the catalytic performance were then discussed in detail. Subsequently, different characterization tools were used to compare the difference and relationship of structure activity between the fresh and spent ZrY catalysts. It was found that acidity and the metal–support interaction were important for the direct synthesis of GVL. This work provides a guideline to design a noble metal-free catalyst for high-value utilization of biomass-derived sources.


Langmuir ◽  
2021 ◽  
Vol 37 (11) ◽  
pp. 3321-3330
Author(s):  
Rong Liang ◽  
Yanwen Wang ◽  
Chao Qin ◽  
Xuehua Chen ◽  
Zhizhen Ye ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yongmeng Wu ◽  
Cuibo Liu ◽  
Changhong Wang ◽  
Yifu Yu ◽  
Yanmei Shi ◽  
...  

AbstractElectrocatalytic alkyne semi-hydrogenation to alkenes with water as the hydrogen source using a low-cost noble-metal-free catalyst is highly desirable but challenging because of their over-hydrogenation to undesired alkanes. Here, we propose that an ideal catalyst should have the appropriate binding energy with active atomic hydrogen (H*) from water electrolysis and a weaker adsorption with an alkene, thus promoting alkyne semi-hydrogenation and avoiding over-hydrogenation. So, surface sulfur-doped and -adsorbed low-coordinated copper nanowire sponges are designedly synthesized via in situ electroreduction of copper sulfide and enable electrocatalytic alkyne semi-hydrogenation with over 99% selectivity using water as the hydrogen source, outperforming a copper counterpart without surface sulfur. Sulfur anion-hydrated cation (S2−-K+(H2O)n) networks between the surface adsorbed S2− and K+ in the KOH electrolyte boost the production of active H* from water electrolysis. And the trace doping of sulfur weakens the alkene adsorption, avoiding over-hydrogenation. Our catalyst also shows wide substrate scopes, up to 99% alkenes selectivity, good reducible groups compatibility, and easily synthesized deuterated alkenes, highlighting the promising potential of this method.


Author(s):  
Junjie Zhu ◽  
Jónína B. Guđmundsdóttir ◽  
Ragnar Strandbakke ◽  
Kevin G. Both ◽  
Thomas Aarholt ◽  
...  

Nano Research ◽  
2021 ◽  
Author(s):  
Xingyang Wu ◽  
Yi Zeng ◽  
Hangchen Liu ◽  
Jiaqing Zhao ◽  
Tierui Zhang ◽  
...  

Author(s):  
Lunlun Gong ◽  
Peili Zhang ◽  
Guoquan Liu ◽  
Yu Shan ◽  
Mei Wang

Modification of the surface of semiconductor-based photoelectrodes with molecular redox catalysts gives a way to realize atom-efficient catalysis for photoelectrochemical (PEC) H2 and O2 evolution. However, the diversity of immobilized...


Sign in / Sign up

Export Citation Format

Share Document