scholarly journals Molecular characterization of an end-residue of humeomics applied to a soil humic acid

RSC Advances ◽  
2014 ◽  
Vol 4 (45) ◽  
pp. 23658-23665 ◽  
Author(s):  
A. Nebbioso ◽  
A. Piccolo ◽  
M. Lamshöft ◽  
M. Spiteller

Humeomics encompasses step-wise chemical fractionation and instrumental determination to fully characterize the heterogeneous molecular composition of natural organic matter.

2010 ◽  
Vol 59 (1) ◽  
pp. 99-108 ◽  
Author(s):  
M. Takács ◽  
Gy. Füleky

The Hot Water Percolation (HWP) technique for preparing soil extracts has several advantages: it is easily carried out, fast, and several parameters can be measured from the same solution. The object of this study was to examine the possible use of HWP extracts for the characterization of soil organic matter. The HPLC-SEC chromatograms, UV-VIS and fluorescence properties of the HWP extracts were studied and the results were compared with those of the International Humic Substances Society (IHSS) Soil Humic Acid (HA), IHSS Soil Fulvic Acid (FA) and IHSS Suwannee Natural Organic Matter (NOM) standards as well as their HA counterparts isolated by traditional extraction methods from the original soil samples. The DOM of the HWP solution is probably a mixture of organic materials, which have some characteristics similar to the Soil FA fractions and NOM. The HWP extracted organic material can be studied and characterized using simple techniques, like UV-VIS and fluorescence spectroscopy.


1991 ◽  
Vol 42 (6) ◽  
pp. 675 ◽  
Author(s):  
GM Day ◽  
R Beckett ◽  
BT Hart ◽  
ID McKelvie

The natural organic matter (NOM) from three streams (Redwater Creek, Slip Creek, Myrtle Creek) and one small lake (the Inkpot) in Victoria, Australia, was fractionated by a simplified version of Leenheer's method in which the NOM is separated into two fractions-hydrophobic acid (HFo-A) compounds and total hydrophilic (HE-T) compounds-on the basis of association with XAD-8 resin. Subsequently, the HFo-A fraction was further separated into humic acid and fulvic acid fractions. One sample (Redwater Creek) was also separated into six different fractions by the full Leenheer scheme. Considerable variation was found in the ratio of humic substances (or the HFo-A fraction) to nonhumic substances (or the HFi-T fraction) between the four samples, with ratios ranging from a high of 77:23% for the Inkpot to a low of 20:80% for Slip Creek. Samples with higher NOM concentrations had higher percentages of humic substances. The major differences in the proportions of humic to nonhumic compounds observed for Slip Creek (20:80%) and Myrtle Creek (52:48%) support the hypothesis that the residence time of the water in the catchment (or, more specifically, the contact time between this water and the sediments, soil, vegetation and microbial community) may control the concentration and nature of aquatic NOM. Within the HFo-A, or humic fraction, the ratio of fulvic acids to humic acids was fairly constant for each of the four water samples investigated, being dominated (>80%) by fulvic acids.


1996 ◽  
Vol 41 (3) ◽  
pp. 488-497 ◽  
Author(s):  
S. Peulvé ◽  
M.-A. Sicre ◽  
A. Saliot ◽  
J. W. De Leeuw ◽  
M. Baas

Sign in / Sign up

Export Citation Format

Share Document