Surface passivation assisted lasing emission in the quantum dots doped cholesteric liquid crystal resonating cavity with polymer template

RSC Advances ◽  
2014 ◽  
Vol 4 (95) ◽  
pp. 52804-52807 ◽  
Author(s):  
Lin-Jer Chen ◽  
Chia-Rong Lee ◽  
Chung-Liang Chu

A copolymer has been used as a template for enhanced optical properties of core–shell CdS/ZnSe quantum dots doped cholesteric liquid crystal.

RSC Advances ◽  
2015 ◽  
Vol 5 (22) ◽  
pp. 16640-16640
Author(s):  
Lin-Jer Chen ◽  
Chia-Rong Lee ◽  
Chung-Liang Chu

Correction for ‘Surface passivation assisted lasing emission in the quantum dots doped cholesteric liquid crystal resonating cavity with polymer template’ by Lin-Jer Chen et al., RSC Adv., 2014, 4, 52804–52807.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Huaping Zhu ◽  
Michael Z. Hu ◽  
Lei Shao ◽  
Kui Yu ◽  
Reza Dabestani ◽  
...  

The colloidal photoluminescent quantum dots (QDs) of CdSe (core) and CdSe/ZnS (core/shell) were synthesized at different temperatures with different growth periods. Optical properties (i.e., UV/Vis spectra and photoluminescent emission spectra) of the resulting QDs were investigated. The shell-protected CdSe/ZnS QDs exhibited higher photoluminescent (PL) efficiency and stability than their corresponding CdSe core QDs. Ligand exchange with various thiol molecules was performed to replace the initial surface passivation ligands, that is, trioctylphosphine oxide (TOPO) and trioctylphosphine (TOP), and the optical properties of the surface-modified QDs were studied. The thiol ligand molecules in this study included 1,4-benzenedimethanethiol, 1,16-hexadecanedithiol, 1,11-undecanedithiol, biphenyl-4,4′-dithiol, 11-mercapto-1-undecanol, and 1,8-octanedithiol. After the thiol functionalization, the CdSe/ZnS QDs exhibited significantly enhanced PL efficiency and storage stability. Besides surface passivation effect, such enhanced performance of thiol-functionalized QDs could be due to cross-linked assembly formation of dimer/trimer clusters, in which QDs are linked by dithiol molecules. Furthermore, effects of ligand concentration, type of ligand, and heating on the thiol stabilization of QDs were also discussed.


2021 ◽  
Vol 23 ◽  
pp. 100948
Author(s):  
Saif M.H. Qaid ◽  
Hamid M. Ghaithan ◽  
Bandar Ali Al-Asbahi ◽  
Abdullah S. Aldwayyan

RSC Advances ◽  
2021 ◽  
Vol 11 (14) ◽  
pp. 7961-7971
Author(s):  
N. D. Vinh ◽  
P. M. Tan ◽  
P. V. Do ◽  
S. Bharti ◽  
V. X. Hoa ◽  
...  

The role of samarium (Sm) dopant on the structural, morphological, and optical properties of CdS QDs and CdS/ZnS core/shell QDs was methodically reported.


2011 ◽  
Vol 1 (5) ◽  
pp. 943 ◽  
Author(s):  
Uladzimir A. Hrozhyk ◽  
Svetlana V. Serak ◽  
Nelson V. Tabiryan ◽  
Timothy J. White ◽  
Timothy J. Bunning

2015 ◽  
Vol 39 ◽  
pp. 46-51 ◽  
Author(s):  
S. Mathew ◽  
Bishwajeet Singh Bhardwaj ◽  
Amit D. Saran ◽  
P. Radhakrishnan ◽  
V.P.N. Nampoori ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 605
Author(s):  
Ayushi Rastogi ◽  
Fanindra Pandey ◽  
Rajiv Manohar ◽  
Shri Singh

We report the effect of the doping of Cd1−xZnxS/ZnS core/shell quantum dots (CSQDs) in nematic liquid crystal p-methoxybenzylidenep-decylaniline (MBDA) at 0.05 wt/wt%, 0.1 wt/wt%, 0.15 wt/wt%, 0.2 wt/wt%, 0.25 wt/wt%, and 0.3 wt/wt% concentrations of CSQDs in MBDA. Dielectric parameters with and without bias with respect to frequency have been investigated. The change in electro-optical parameters with temperature has also been demonstrated. The increase in the mean dielectric permittivity was found due to the large dipole moment of CSQDs, which impose stronger interactions with the liquid crystal molecules. The dielectric anisotropy changes sign on doping CSQDs in MBDA liquid crystal. It was concluded that the CSQD doping noticeably increased the dielectric permittivity of nematic MBDA in the presence of an electric field. The doping of CSQDs in nematic MBDA liquid crystal reduced the ion screening effect effectively. This phenomenon is attributed to the competition between the generated ionic impurities during the assembling process and the ion trapping effect of the CSQDs. The rotational viscosity of nematic liquid crystal decreased with increasing concentration of the CSQDs, with a faster response time observed for the 0.05 wt/wt% concentration. The birefringence of the doped system increased with the inclusion of CSQDs in MBDA. These results find application in the field of display devices, phase shifters, LC – gratings, TIR waveguide, industries, and projectors.


2013 ◽  
Vol 4 (11) ◽  
pp. 1760-1765 ◽  
Author(s):  
Mohamed Abdellah ◽  
Karel Žídek ◽  
Kaibo Zheng ◽  
Pavel Chábera ◽  
Maria E. Messing ◽  
...  

2018 ◽  
Vol 26 (14) ◽  
pp. 18480 ◽  
Author(s):  
Lingling Ran ◽  
Haiyang Li ◽  
Wenzhi Wu ◽  
Yachen Gao ◽  
Zhijun Chai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document