Active phase of highly active Co3O4 catalyst for synthetic natural gas production

RSC Advances ◽  
2014 ◽  
Vol 4 (100) ◽  
pp. 57185-57191 ◽  
Author(s):  
Baowei Wang ◽  
Sihan Liu ◽  
Zongyuan Hu ◽  
Zhenhua Li ◽  
Xinbin Ma

Co3O4 nanoparticles showed high catalytic activity for low temperature CO methanation. CoO is the active phase of the catalyst. Pre-reduction treatment can improve catalytic stability.

2015 ◽  
Vol 69 (10) ◽  
pp. 608-613 ◽  
Author(s):  
Anastasios Kambolis ◽  
Tilman J. Schildhauer ◽  
Oliver Kröcher

2018 ◽  
Vol 299 ◽  
pp. 183-192 ◽  
Author(s):  
L. Atzori ◽  
M.G. Cutrufello ◽  
D. Meloni ◽  
C. Cannas ◽  
D. Gazzoli ◽  
...  

2012 ◽  
Vol 51 (13) ◽  
pp. 4875-4886 ◽  
Author(s):  
Dacheng Hu ◽  
Jiajian Gao ◽  
Yuan Ping ◽  
Lihua Jia ◽  
Poernomo Gunawan ◽  
...  

1986 ◽  
Vol 51 (12) ◽  
pp. 2751-2759 ◽  
Author(s):  
Jindřich Poláček ◽  
Helena Antropiusová ◽  
Lidmila Petrusová ◽  
Karel Mach

The C6H6.Ti(II)(AlBr4)2 (Ib) catalyst deactivates during the butadiene cyclotrimerization to give a solid containing all titanium (mostly as TiBr3) and a mixture of AlBr3 and RAlBr2 compounds dissolved in benzene. The residual cationic catalytic activity of the deactivated Ib system is due to presence of AlBr3. In contrast to TiCl3, the deactivated Ib system and the model system TiBr3 + AlBr3 are not activated by the addition of EtAlCl2 in the presence of butadiene: the highly active benzenetitanium(II) system is re-constituted only after reduction of TiBr3 with Et3Al followed by the addition of EtAlCl2. The addition of Et2AlBr to Ib accelerates the deactivation of the system. Deactivation products of this system contain mainly Ti(II) species which forms benzenetitanium(II) catalytic system after addition of EtAlCl2. All the EtAlCl2 reactivated systems produce (Z, E, E)-1,5,9-cyclododecatriene with high catalytic stability and considerable selectivity (>90%). This behaviour points to the catalysis by benzenetitanium(II) chloroalane complexes containing only low amount of bromine atoms and ethyl groups.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 105
Author(s):  
Tae Young Kim ◽  
Seong Bin Jo ◽  
Jin Hyeok Woo ◽  
Jong Heon Lee ◽  
Ragupathy Dhanusuraman ◽  
...  

Co–Fe–Al catalysts prepared using coprecipitation at laboratory scale were investigated and extended to pilot scale for high-calorific synthetic natural gas. The Co–Fe–Al catalysts with different metal loadings were analyzed using BET, XRD, H2-TPR, and FT-IR. An increase in the metal loading of the Co–Fe–Al catalysts showed low spinel phase ratio, leading to an improvement in reducibility. Among the catalysts, 40CFAl catalyst prepared at laboratory scale afforded the highest C2–C4 hydrocarbon time yield, and this catalyst was successfully reproduced at the pilot scale. The pelletized catalyst prepared at pilot scale showed high CO conversion (87.6%), high light hydrocarbon selectivity (CH4 59.3% and C2–C4 18.8%), and low byproduct amounts (C5+: 4.1% and CO2: 17.8%) under optimum conditions (space velocity: 4000 mL/g/h, 350 °C, and 20 bar).


Sign in / Sign up

Export Citation Format

Share Document