A new family of anionic organic–inorganic hybrid doughnut-like nanostructures

2015 ◽  
Vol 51 (44) ◽  
pp. 9223-9226 ◽  
Author(s):  
Zhuxiu Zhang ◽  
Wen-Yang Gao ◽  
Lukasz Wojtas ◽  
Zhenjie Zhang ◽  
Michael J. Zaworotko

A family of soluble organic–inorganic hybrid doughnut-like anions has been prepared by the self-assembly of polyoxovanadate anions and 1,3-benzenedicarboxylate linkers.

2022 ◽  
Author(s):  
Jamie M. Cameron ◽  
Geoffroy Guillemot ◽  
Theodor Galambos ◽  
Sharad S. Amin ◽  
Elizabeth Hampson ◽  
...  

Organic–inorganic hybrid polyoxometalates are versatile building blocks for the self-assembly of functional supramolecular materials.


2014 ◽  
Vol 50 (54) ◽  
pp. 7180 ◽  
Author(s):  
Guodong Tang ◽  
Si Chen ◽  
Feng Ye ◽  
Xiaopeng Xu ◽  
Jing Fang ◽  
...  

2015 ◽  
Vol 54 (10) ◽  
pp. 4709-4723 ◽  
Author(s):  
Moumita Pait ◽  
Antonio Bauzá ◽  
Antonio Frontera ◽  
Enrique Colacio ◽  
Debashis Ray
Keyword(s):  
The Self ◽  

2006 ◽  
Vol 111 (3) ◽  
pp. 368-370 ◽  
Author(s):  
Yoshinori Kakizawa ◽  
Sanae Furukawa ◽  
Atushi Ishii ◽  
Kazunori Kataoka

2020 ◽  
Author(s):  
Josh Nicks ◽  
Stephanie Boer ◽  
Nicholas White ◽  
jonathan Foster

Hydrogen-bonded organic frameworks (HOFs) are a diverse and tunable class of materials, but their potential as free-standing two-dimensional nanomaterials has yet to be explored. Here we report the self-assembly of two layered hydrogen-bonded frameworks based on strong, charge-assisted hydrogen-bonding between carboxylate and amidinium groups. Ultrasound-assisted liquid exfoliation of both materials readily produces monolayer hydrogen-bonded organic nanosheets (HONs) with micron-sized lateral dimensions. The HONs show remarkable stability and maintain their extended crystallinity and monolayer structures even after being suspended in water at 80 °C for three days. These systems also exhibit efficient fluorescence quenching of an organic dye in organic solvents, superior to the quenching ability of the bulk frameworks. We anticipate that this approach will provide a route towards a diverse new family of molecular two-dimensional materials with great potential for use in separation, sensing, catalysis, delivery, and electronics materials applications.


2020 ◽  
Author(s):  
Josh Nicks ◽  
Stephanie Boer ◽  
Nicholas White ◽  
jonathan Foster

Hydrogen-bonded organic frameworks (HOFs) are a diverse and tunable class of materials, but their potential as free-standing two-dimensional nanomaterials has yet to be explored. Here we report the self-assembly of two layered hydrogen-bonded frameworks based on strong, charge-assisted hydrogen-bonding between carboxylate and amidinium groups. Ultrasound-assisted liquid exfoliation of both materials readily produces monolayer hydrogen-bonded organic nanosheets (HONs) with micron-sized lateral dimensions. The HONs show remarkable stability and maintain their extended crystallinity and monolayer structures even after being suspended in water at 80 °C for three days. These systems also exhibit efficient fluorescence quenching of an organic dye in organic solvents, superior to the quenching ability of the bulk frameworks. We anticipate that this approach will provide a route towards a diverse new family of molecular two-dimensional materials with great potential for use in separation, sensing, catalysis, delivery, and electronics materials applications.


Author(s):  
M. Kessel ◽  
R. MacColl

The major protein of the blue-green algae is the biliprotein, C-phycocyanin (Amax = 620 nm), which is presumed to exist in the cell in the form of distinct aggregates called phycobilisomes. The self-assembly of C-phycocyanin from monomer to hexamer has been extensively studied, but the proposed next step in the assembly of a phycobilisome, the formation of 19s subunits, is completely unknown. We have used electron microscopy and analytical ultracentrifugation in combination with a method for rapid and gentle extraction of phycocyanin to study its subunit structure and assembly.To establish the existence of phycobilisomes, cells of P. boryanum in the log phase of growth, growing at a light intensity of 200 foot candles, were fixed in 2% glutaraldehyde in 0.1M cacodylate buffer, pH 7.0, for 3 hours at 4°C. The cells were post-fixed in 1% OsO4 in the same buffer overnight. Material was stained for 1 hour in uranyl acetate (1%), dehydrated and embedded in araldite and examined in thin sections.


Author(s):  
Xiaorong Zhu ◽  
Richard McVeigh ◽  
Bijan K. Ghosh

A mutant of Bacillus licheniformis 749/C, NM 105 exhibits some notable properties, e.g., arrest of alkaline phosphatase secretion and overexpression and hypersecretion of RS protein. Although RS is known to be widely distributed in many microbes, it is rarely found, with a few exceptions, in laboratory cultures of microorganisms. RS protein is a structural protein and has the unusual properties to form aggregate. This characteristic may have been responsible for the self assembly of RS into regular tetragonal structures. Another uncommon characteristic of RS is that enhanced synthesis and secretion which occurs when the cells cease to grow. Assembled RS protein with a tetragonal structure is not seen inside cells at any stage of cell growth including cells in the stationary phase of growth. Gel electrophoresis of the culture supernatant shows a very large amount of RS protein in the stationary culture of the B. licheniformis. It seems, Therefore, that the RS protein is cotranslationally secreted and self assembled on the envelope surface.


2019 ◽  
Vol 10 (45) ◽  
pp. 6116-6121 ◽  
Author(s):  
Tan Ji ◽  
Lei Xia ◽  
Wei Zheng ◽  
Guang-Qiang Yin ◽  
Tao Yue ◽  
...  

We present a new family of porphyrin-functionalized coordination star polymers prepared through combination of coordination-driven self-assembly and post-assembly polymerization. Their self-assembly behaviour in water and potential for photodynamic therapy were demonstrated.


Sign in / Sign up

Export Citation Format

Share Document