Analysis of the electrostatics in DyIII single-molecule magnets: the case study of Dy(Murex)3

2015 ◽  
Vol 44 (41) ◽  
pp. 18270-18275 ◽  
Author(s):  
J. Jung ◽  
X. Yi ◽  
G. Huang ◽  
G. Calvez ◽  
C. Daiguebonne ◽  
...  

A DyIII-based single-molecule magnet is reported. Ab initio calculations highlight that molecular symmetry plays a predominant role over site symmetry in determining the shape and orientation of DyIII magnetic anisotropy.

2021 ◽  
Author(s):  
Matteo Briganti ◽  
Federico Totti

Lanthanide based single molecule magnets have recently become very promising systems for creating single molecule device working at high temperature (nitrogen boiling temperature). However, the variation of direction of the...


2019 ◽  
Vol 10 (30) ◽  
pp. 7233-7245 ◽  
Author(s):  
Matteo Briganti ◽  
Guglielmo Fernandez Garcia ◽  
Julie Jung ◽  
Roberta Sessoli ◽  
Boris Le Guennic ◽  
...  

The unexpected covalent contribution in the DOTADy-OH2 bond revealed by ab initio calculations of the easy axis of magnetization through simple H2O rotations.


2018 ◽  
Author(s):  
Marcus J. Giansiracusa ◽  
Andreas Kostopoulos ◽  
George F. S. Whitehead ◽  
David Collison ◽  
Floriana Tuna ◽  
...  

We report a six coordinate DyIII single-molecule magnet<br>(SMM) with an energy barrier of 1110 K for thermal relaxation of<br>magnetization. The sample shows no retention of magnetization<br>even at 2 K and this led us to find a good correlation between the<br>blocking temperature and the Raman relaxation regime for SMMs.<br>The key parameter is the relaxation time (𝜏<sub>switch</sub>) at the point where<br>the Raman relaxation mechanism becomes more important than<br>Orbach.


2021 ◽  
Vol 50 (6) ◽  
pp. 2102-2111
Author(s):  
Jing Xi ◽  
Xiufang Ma ◽  
Peipei Cen ◽  
Yuewei Wu ◽  
Yi-Quan Zhang ◽  
...  

Substituent change modulates the coordination symmetries and magnetic dynamics of five mononuclear β-diketonate-Dy(iii) complexes with capping N-donor coligands, which is studied by the combination of magnetic investigation and ab initio calculation.


2021 ◽  
Author(s):  
Jun-Jie Hu ◽  
Yan Peng ◽  
Sui-Jun Liu ◽  
He-Rui Wen

The molecular magnetorefrigerant materials for low-temperature magnetic refrigeration and single-molecule magnets for high-density information storage and quantum computing have received extensive attention from chemists and magnetic experts. Lanthanide ions with...


2014 ◽  
Vol 67 (11) ◽  
pp. 1542 ◽  
Author(s):  
Michele Vonci ◽  
Colette Boskovic

Polyoxometalates are robust and versatile multidentate oxygen-donor ligands, eminently suitable for coordination to trivalent lanthanoid ions. To date, 10 very different structural families of such complexes have been found to exhibit slow magnetic relaxation due to single-molecule magnet (SMM) behaviour associated with the lanthanoid ions. These families encompass complexes with between one and four of the later lanthanoid ions: Tb, Dy, Ho, Er, and Yb. The lanthanoid coordination numbers vary between six and eleven and a range of coordination geometries are evident. The highest energy barrier to magnetisation reversal measured to date for a lanthanoid–polyoxometalate SMM is Ueff/kB = 73 K for the heterodinuclear Dy–Eu compound (Bu4N)8H4[DyEu(OH)2(γ-SiW10O36)2].


2018 ◽  
Vol 47 (46) ◽  
pp. 16422-16428 ◽  
Author(s):  
Fumiya Kobayashi ◽  
Ryo Ohtani ◽  
Sotaro Kusumoto ◽  
Leonard F. Lindoy ◽  
Shinya Hayami ◽  
...  

Wheel-type heptanuclear heterometallic clusters display metal ion dependent ferromagnetic properties and express single molecule magnet behavior based on the magnetic anisotropy.


2018 ◽  
Vol 47 (42) ◽  
pp. 15197-15205 ◽  
Author(s):  
Yaru Qin ◽  
Yu Jing ◽  
Yu Ge ◽  
Wei Liu ◽  
Yahong Li ◽  
...  

Two dinuclear dysprosium complexes of 1 and 2 have been synthesized and both of them exhibit SMM behavior. The energy barrier is enhanced ca. 35 K by elaborately tuning the backbones of the ligands.


2019 ◽  
Vol 123 (32) ◽  
pp. 6996-7006 ◽  
Author(s):  
Ryan Pederson ◽  
Aleksander L. Wysocki ◽  
Nicholas Mayhall ◽  
Kyungwha Park

Sign in / Sign up

Export Citation Format

Share Document