Uniform yolk–shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries

2015 ◽  
Vol 8 (12) ◽  
pp. 3531-3538 ◽  
Author(s):  
Jun Liu ◽  
Peter Kopold ◽  
Chao Wu ◽  
Peter A. van Aken ◽  
Joachim Maier ◽  
...  

Uniform yolk–shell Sn4P3@C nanospheres exhibit very high reversible capacity, superior rate capability and stable cycling performance for Na-ion batteries.

2021 ◽  
Author(s):  
Francielli Genier ◽  
Shreyas Pathreeker ◽  
Robson Schuarca ◽  
Mohammad Islam ◽  
Ian Hosein

Deriving battery grade materials from natural sources is a key element to establishing sustainable energy storage technologies. In this work, we present the use of avocado peels as a sustainable source for conversion into hard carbon based anodes for sodium ion batteries. The avocado peels are simply washed and dried then proceeded to a high temperature conversion step. Materials characterization reveals conversion of the avocado peels in high purity, highly porous hard carbon powders. When prepared as anode materials they show to the capability to reversibly store and release sodium ions. The hard carbon-based electrodes exhibit excellent cycling performance, namely, a reversible capacity of 352.55 mAh/g at 0.05 A/g, rate capability up to 86 mAh/g at 3500 mA/g, capacity retention of >90%, and 99.9% coulombic efficiencies after 500 cycles. This study demonstrates avocado derived hard carbon as a sustainable source that can provide excellent electrochemical and battery performance as anodes in sodium ion batteries.


2019 ◽  
Vol 7 (6) ◽  
pp. 2553-2559 ◽  
Author(s):  
Pengxin Li ◽  
Xin Guo ◽  
Shijian Wang ◽  
Rui Zang ◽  
Xuemei Li ◽  
...  

Two-dimensional Sb@TiO2−x nanoplates with abundant voids deliver high reversible capacity, excellent rate capability and stable cycling performance.


RSC Advances ◽  
2017 ◽  
Vol 7 (37) ◽  
pp. 23122-23126 ◽  
Author(s):  
Zhenwei Mao ◽  
Min Zhou ◽  
Kangli Wang ◽  
Wei Wang ◽  
Hongwei Tao ◽  
...  

Co3O4@CNFs was fabricated facilely with unique 1D structure of Co3O4 nanoparticles encapsulated in carbon nanofibers, delivering a high reversible capacity of 422.4 mA h g−1 with outstanding rate capability and cycling performance.


2016 ◽  
Vol 4 (17) ◽  
pp. 6472-6478 ◽  
Author(s):  
Bin Cao ◽  
Huan Liu ◽  
Bin Xu ◽  
Yaofei Lei ◽  
Xiaohong Chen ◽  
...  

Mesoporous soft carbon with a high reversible capacity of 331 mA h g−1, excellent rate capability and cycling performance was prepared from mesophase pitch using nano-CaCO3 as the template for sodium-ion batteries.


2016 ◽  
Vol 4 (44) ◽  
pp. 17419-17430 ◽  
Author(s):  
Ramchandra S. Kalubarme ◽  
Akbar I. Inamdar ◽  
D. S. Bhange ◽  
Hyunsik Im ◽  
Suresh W. Gosavi ◽  
...  

This is the first report on the use of metal titanate (NiTiO3), in the form of ultrafine nanoparticles, as an anode material for Na-ion rechargeable batteries. NiTiO3 was prepared using a simple and economical hydrothermal process, and the ultrafine nanoparticles exhibited a high reversible capacity and an excellent cycling performance.


2020 ◽  
Vol 12 (9) ◽  
pp. 1429-1432
Author(s):  
Seunghwan Cha ◽  
Changhyeon Kim ◽  
Huihun Kim ◽  
Gyu-Bong Cho ◽  
Kwon-Koo Cho ◽  
...  

Recently, sodium ion batteries have attracted considerable interest for large-scale electric energy storage as an alternative to lithium ion batteries. However, the development of anode materials with long cycle life, high rate, and high reversible capacity is necessary for the advancement of sodium ion batteries. Bi anode is a promising candidate for sodium ion batteries due to its high theoretical capacity (385 mAh g–1 or 3800 mAh l–1) and high electrical conductivity (7.7 × 105 S m –1). Herein, we report the preparation of Bi anode using micro-sized commercial Bi particles. DME-based electrolyte was used, which is well known for its high ionic conductivity. The Bi anode showed excellent rate-capability up to 16 C-rate, and long cycle life stability with a high reversible capacity of 354 mAh g–1 at 16 C-rate for 50 cycles.


2019 ◽  
Vol 55 (77) ◽  
pp. 11575-11578 ◽  
Author(s):  
Jonghyun Choi ◽  
Kyeong-Ho Kim ◽  
Chul-Ho Jung ◽  
Seong-Hyeon Hong

P2-type Na0.7(Ni0.6Co0.2Mn0.2)O2 is synthesized and introduced as a cathode for sodium-ion batteries, which exhibits high reversible capacity, excellent high rate capability and superior long term cyclability.


2016 ◽  
Vol 4 (2) ◽  
pp. 605-611 ◽  
Author(s):  
Qing Xia ◽  
Hailei Zhao ◽  
Zhihong Du ◽  
Zijia Zhang ◽  
Shanming Li ◽  
...  

3-D hierarchical MoO2/Ni/C, with high reversible capacity and excellent rate capability, is a promising candidate for anode materials of lithium ion batteries.


Sign in / Sign up

Export Citation Format

Share Document