hydrothermal process
Recently Published Documents


TOTAL DOCUMENTS

1897
(FIVE YEARS 484)

H-INDEX

71
(FIVE YEARS 12)

2022 ◽  
Author(s):  
Hamid Hosseinzadeh ◽  
Hamidreza Oveisi

Abstract In the present study, CoFe2O4 and CoFe2-xGdxO4 nanoparticles were synthesized by the hydrothermal process. The CoFe2O4 nanoparticles were synthesized at different temperatures (70oC, 100oC, 150oC, and 200oC), molar ratio of CoCl2/ FeCl3 (0/2, 0.75/2, 1/2, 1.5/2, and 2/2). Gadolinium-doped cobalt ferrite (CoFe2-xGdxO4) nanoparticles have also been synthesized with Gd/Fe molar ratios of 0.18 and 0.53. The XRD patterns indicate that cobalt ferrite and Gadolinium-doped cobalt ferrite nanoparticles have been successfully synthesized without impurities with a medium degree of crystallinity. The XRD patterns show that by increasing the synthesis temperature from 70oC to 200oC, the size of the nanoparticles decreased from 50.49nm to 32.45nm while the morphology of the nanoparticles also changed from a shapeless and agglomerated state to a spherical shape. The XPS curve illustrated several peaks corresponding to Fe+3, Co+2, and O 1s. The binding energies for Co and Fe were consistent with Fe 2p and Co 2p binding energies for cobalt ferrite nanoparticles. The magnetic saturation value (Ms) increased from 17.253 emu/g to 54.438 emu/g with a rise in the synthesis temperature. The effects of FeCl3/CoCl2 molar ratio on the magnetic properties showed the highest value of Ms (54.438 emu/g) and the coercivity (HC) of 744.56 Oe for a 2/1 molar ratio. The addition of gadolinium to the composition resulted in a reducing of the magnetic properties of nanoparticles; accordingly, the amount of saturated magnetization was reduced to 22.469 emu/g. Another effect of gadolinium dopant in the composition was a change in nanoparticle morphology from spherical to rod shape. The final aim of this study was to investigate the possible utilization of CoFe2O4 and CoFe2-xGdxO4 nanoparticles in medical treatment in the near future.


2022 ◽  
Author(s):  
Xiyu Deng ◽  
Xinya Kuang ◽  
Jiyang Zeng ◽  
Baoye Zi ◽  
Yiwen Ma ◽  
...  

Abstract Photocatalytic water splitting is considered to be a feasible method to replace traditional energy. However, most of the catalysts have unsatisfactory performance. In this work, we used a hydrothermal process to grow Ag nanoparticles in situ on g-C3N4 nanosheets, and then a high performance catalyst (Ag- g-C3N4) under visible light was obtained. The Ag nanoparticles obtained by this process are amorphous and exhibit excellent catalytic activity. At the same time, the local plasmon resonance effect of Ag can effectively enhance the absorption intensity of visible light by the catalyst. The hydrogen production rate promote to 1035 μmol g-1h-1 after loaded 0.6 wt% of Ag under the visible light, which was 313 times higher than that of pure g-C3N4 (3.3μmol g-1h-1). This hydrogen production rate is higher than most previously reported catalysts which loaded with Ag or Pt. The excellent activity of Ag- g-C3N4 is benefited from the Ag nanoparticles and special interaction in each other. Through various analysis and characterization methods, it is shown that the synergy between Ag and g-C3N4 can effectively promote the separation of carriers and the transfer of electrons. Our work proves that Ag- g-C3N4 is a promising catalyst to make full use of solar energy.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 111
Author(s):  
Iuliana Bejenari ◽  
Gabriela Hristea ◽  
Constantin Cărăușu ◽  
Alice Mija ◽  
Irina Volf

In the context of sustainable use of resources, hydrothermal conversion of biomass has received increased consideration. As well, the hydrochar (the solid C-rich phase that occurs after the process) has caused great interest. In this work, spruce bark (Picea abies) wastes were considered as feedstock and the influence of hydrothermal process parameters (temperature, reaction time, and biomass to water ratio) on the conversion degree has been studied. Using the response surface methodology and MiniTab software, the process parameters were set up and showed that temperature was the significant factor influencing the conversion, while residence time and the solid-to-liquid ratio had a low influence. Furthermore, the chemical (proximate and ultimate analysis), structural (Fourier-transform infrared spectroscopy, scanning electron microscopy) and thermal properties (thermogravimetric analysis) of feedstock and hydrochar were analyzed. Hydrochar obtained at 280 °C, 1 h processing time, and 1/5 solid-to-liquid ratio presented a hydrophobic character, numerous functional groups, a lower O and H content, and an improved C matter, as well as a good thermal stability. Alongside the structural features, these characteristics endorsed this waste-based product for applications other than those already known as a heat source.


2022 ◽  
Vol 11 (2) ◽  
pp. 403-412
Author(s):  
Heri Rustamaji ◽  
Tirto Prakoso ◽  
Jenny Rizkiana ◽  
Hary Devianto ◽  
Pramujo Widiatmoko ◽  
...  

The purpose of this study is to alter the biomass of Sargassum sp. into elective fills and high valuable biomaterials in a hydrothermal process at 200oC for 90 minutes, using ZnCl2 and CaCl2 activating agents, withChClas a catalyst. This method generatedthree primaryoutputs: hydrochar, bio-oil, and gasproducts. ChCl to water ratio varies from 1:3, 1:1, and 3:1. The hydrochar yield improved when the catalyst ratio was increased, but the bio-oil and gas yield declined. The highest hydrochar yields were 76.95, 63.25, and 44.16 percent in ZnCl2, CaCl2, and no activating agent samples, respectively.The porosity analysis observed mesopore structures with the most pore diameters between 3.9-5.2 nm with a surface area between44.71-55.2. The attribute of interaction between activator and catalyst plays a role in pore formation. The hydrochar products with CaCl2 showed the best thermal stability. From the whole experiment, the optimum hydrochar yield (76.95%), optimum surface area (55.42 m2 g-1), and the increase in carbon content from 21.11 to 37.8% were achieved at the ratio of ChCl to water was three, and the activating agent of ZnCl2. The predominant bio-oil components were hexadecane, hexadecanoic, and 9-octadecenoic acids, with a composition of 51.65, 21.44, and 9.87%, respectively the remaining contained aromatic alkanes and other fatty acids. The findings of this study reported that adding activating agents and catalysts improve hydrochar yield and characteristics of hydrochar and bio-oil products, suggesting the potential of hydrochar as a solid fuel or biomaterial and bio-oil as liquid biofuel


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 328
Author(s):  
Yifei Zhou ◽  
Lei Yan ◽  
Junhua Hou

The synthesis of metal-free carbon-based electrocatalysts for oxygen reduction reactions (ORR) to replace conventional Pt-based catalysts has become a hot spot in current research. This work proposes an activation-assisted carbonization strategy, to manufacture N-doped ultra-thin carbon nanosheets (GWS180M800) with high catalytic activity, namely, melamine is used as an accelerator/nitrogen source, and walnut green peels biological waste as a carbon source. The melamine acts as a nitrogen donor in the hydrothermal process, effectively enhancing the nitrogen doping rate. The content of pyridine nitrogen groups accounts for up to 48.5% of the total nitrogen content. Electrochemical tests show that the GWS180M800 has excellent ORR electrocatalytic activity and stability, and makes a quasi-four-electron ORR pathway clear in the alkaline electrolyte. The initial potential and half slope potential are as high as 1.01 and 0.82 V vs. RHE, respectively. The GWS180M800 catalyst has a better ability to avoid methanol cross poisoning than Pt/C has. Compared with 20 wt% Pt/C, GWS180M800 has improved methanol tolerance and stability. It is a metal-free biochar ORR catalyst with great development potential and application prospects. This result provides a new space for the preparation of valuable porous nano-carbon materials based on carbonaceous solid waste and provides new ideas for catalyzing a wide range of electrochemical reactions in the future.


2022 ◽  
Author(s):  
Venugopal Boya ◽  
Pratheeksha Parakandy Muzhikara ◽  
Bayikadi Khasimsaheb ◽  
Pavan Srinivas Veluri ◽  
M. Ramakrishna ◽  
...  

Herein, we report the synthesis, characterization and electrochemical performance of carbon coated mesoporous SnO2 nanoparticles (NPs) prepared by adopting a simple hydrothermal process. BET analysis shows that the SnO2 formed...


KOVALEN ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 208-213
Author(s):  
Mukhtar Ghozali ◽  
Gamaliel Tanaka ◽  
Muhammad Misbahussalam ◽  
Tifa Paramitha

ZSM-5 is a synthetic zeolite which has a complex production process and is affected by operating conditions, such as temperature and time. In this study, synthesized ZSM-5 without template by hydrothermal method. An autoclave reactor was used for the hydrothermal process. The aim of this study was to investigate the effect of varied hydrothermal times of 24 and 48 hours with a hydrothermal temperature of 180oC on the characteristic of ZSM-5. The raw materials used were silica oxide and aluminum hydroxide as a source of silica and alumina. The synthesis results were characterized using X-Ray Diffraction (XRD). Based on XRD results, the best result was obtained in performed at 48 hours hydrothermal time indicating the formation of ZSM-5 material at the 22.2o position. The percentage crystallinity of the sample at the hydrothermal time of 48 hours was 51.3%.


2021 ◽  
Vol 22 (48) ◽  
pp. 25-30
Author(s):  
Narandalai Byamba-ochir ◽  
Nemekhbayar Davaadorj ◽  
Battseveen Buyankhishig ◽  
Enkhtuul Surenjav

Silver nanoparticles (AgNPs) and silver nanoparticles doped activated carbon (AC-Ag) composite materials were synthesized by hydrothermal processes in supercritical water conditions (29 MPa and 400 °C) using batch reactor. We studied the influence of the precursor solution concentration, reaction temperature under the hydrothermal conditions, and synthesis time on the properties of synthesized materials. The properties of plain AgNPs and AC-Ag composite materials synthesized in supercritical water, including crystallinity, particle size, and molecular interactions between AC and Ag were investigated, comprehensively. Compared to the plain AgNPs, the activated carbon-supported Ag nanocomposite was synthesized faster due to the active functional groups of activated carbon. Furthermore, the FTIR results reveal that the silver nanoparticles are attached to the activated carbon surface in the presence of oxygen bonded carbonyl and carboxyl groups. The nano-sized metal silver particles were observed on the AC surface when analyzed by TEM and XRD. All results imply that the supercritical water condition allows the formation of silver particles less than 100 nm either in the form of plain particles or deposited on the activated carbon surface using the silver acetate precursor solution. This environmentally benign supercritical hydrothermal process can replace the conventional method and become a novel synthesis method for preparing various new materials.


Sign in / Sign up

Export Citation Format

Share Document