scholarly journals Electrospinning synthesis of Co3O4@C nanofibers as a high-performance anode for sodium ion batteries

RSC Advances ◽  
2017 ◽  
Vol 7 (37) ◽  
pp. 23122-23126 ◽  
Author(s):  
Zhenwei Mao ◽  
Min Zhou ◽  
Kangli Wang ◽  
Wei Wang ◽  
Hongwei Tao ◽  
...  

Co3O4@CNFs was fabricated facilely with unique 1D structure of Co3O4 nanoparticles encapsulated in carbon nanofibers, delivering a high reversible capacity of 422.4 mA h g−1 with outstanding rate capability and cycling performance.

2019 ◽  
Vol 7 (6) ◽  
pp. 2553-2559 ◽  
Author(s):  
Pengxin Li ◽  
Xin Guo ◽  
Shijian Wang ◽  
Rui Zang ◽  
Xuemei Li ◽  
...  

Two-dimensional Sb@TiO2−x nanoplates with abundant voids deliver high reversible capacity, excellent rate capability and stable cycling performance.


2015 ◽  
Vol 8 (12) ◽  
pp. 3531-3538 ◽  
Author(s):  
Jun Liu ◽  
Peter Kopold ◽  
Chao Wu ◽  
Peter A. van Aken ◽  
Joachim Maier ◽  
...  

Uniform yolk–shell Sn4P3@C nanospheres exhibit very high reversible capacity, superior rate capability and stable cycling performance for Na-ion batteries.


2021 ◽  
Author(s):  
Francielli Genier ◽  
Shreyas Pathreeker ◽  
Robson Schuarca ◽  
Mohammad Islam ◽  
Ian Hosein

Deriving battery grade materials from natural sources is a key element to establishing sustainable energy storage technologies. In this work, we present the use of avocado peels as a sustainable source for conversion into hard carbon based anodes for sodium ion batteries. The avocado peels are simply washed and dried then proceeded to a high temperature conversion step. Materials characterization reveals conversion of the avocado peels in high purity, highly porous hard carbon powders. When prepared as anode materials they show to the capability to reversibly store and release sodium ions. The hard carbon-based electrodes exhibit excellent cycling performance, namely, a reversible capacity of 352.55 mAh/g at 0.05 A/g, rate capability up to 86 mAh/g at 3500 mA/g, capacity retention of >90%, and 99.9% coulombic efficiencies after 500 cycles. This study demonstrates avocado derived hard carbon as a sustainable source that can provide excellent electrochemical and battery performance as anodes in sodium ion batteries.


2016 ◽  
Vol 4 (17) ◽  
pp. 6472-6478 ◽  
Author(s):  
Bin Cao ◽  
Huan Liu ◽  
Bin Xu ◽  
Yaofei Lei ◽  
Xiaohong Chen ◽  
...  

Mesoporous soft carbon with a high reversible capacity of 331 mA h g−1, excellent rate capability and cycling performance was prepared from mesophase pitch using nano-CaCO3 as the template for sodium-ion batteries.


2021 ◽  
Author(s):  
Jiaying Liao ◽  
Jingchen Han ◽  
Jianzhi Xu ◽  
Yichen Du ◽  
Yingying Sun ◽  
...  

We demonstrate an economical polytetrafluoroethylene-assisted fluorination method to synthesize three binary sodium-rich fluorides Na2MVF7 (M = Mn, Fe, and Co). The optimal Na2FeVF7 cathode delivers a high reversible capacity of...


2016 ◽  
Vol 4 (44) ◽  
pp. 17419-17430 ◽  
Author(s):  
Ramchandra S. Kalubarme ◽  
Akbar I. Inamdar ◽  
D. S. Bhange ◽  
Hyunsik Im ◽  
Suresh W. Gosavi ◽  
...  

This is the first report on the use of metal titanate (NiTiO3), in the form of ultrafine nanoparticles, as an anode material for Na-ion rechargeable batteries. NiTiO3 was prepared using a simple and economical hydrothermal process, and the ultrafine nanoparticles exhibited a high reversible capacity and an excellent cycling performance.


2020 ◽  
Vol 12 (9) ◽  
pp. 1429-1432
Author(s):  
Seunghwan Cha ◽  
Changhyeon Kim ◽  
Huihun Kim ◽  
Gyu-Bong Cho ◽  
Kwon-Koo Cho ◽  
...  

Recently, sodium ion batteries have attracted considerable interest for large-scale electric energy storage as an alternative to lithium ion batteries. However, the development of anode materials with long cycle life, high rate, and high reversible capacity is necessary for the advancement of sodium ion batteries. Bi anode is a promising candidate for sodium ion batteries due to its high theoretical capacity (385 mAh g–1 or 3800 mAh l–1) and high electrical conductivity (7.7 × 105 S m –1). Herein, we report the preparation of Bi anode using micro-sized commercial Bi particles. DME-based electrolyte was used, which is well known for its high ionic conductivity. The Bi anode showed excellent rate-capability up to 16 C-rate, and long cycle life stability with a high reversible capacity of 354 mAh g–1 at 16 C-rate for 50 cycles.


2019 ◽  
Vol 55 (77) ◽  
pp. 11575-11578 ◽  
Author(s):  
Jonghyun Choi ◽  
Kyeong-Ho Kim ◽  
Chul-Ho Jung ◽  
Seong-Hyeon Hong

P2-type Na0.7(Ni0.6Co0.2Mn0.2)O2 is synthesized and introduced as a cathode for sodium-ion batteries, which exhibits high reversible capacity, excellent high rate capability and superior long term cyclability.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ruihan Zhang ◽  
Vidhur Raveendran ◽  
Yining He ◽  
Andy Yau ◽  
Austin Chang ◽  
...  

Sodium-ion batteries (SIBs) have been regarded as one of the most competitive alternatives for lithium-ion batteries (LIBs) due to the abundance of sodium and comparable electrochemical characteristics of sodium to that of lithium. However, while highly desired, developing stable anode materials remains a critical challenge. In this work, the development of a stable anode for SIBs is reported, a poriferous nanoflake-assembled flower-like nickel tetraphosphide (PNAF-NP) with high surface area and typical mesoporous property. Due to the unique structure, the PANF-NP anode exhibits excellent reversible capacity of 648.34 mAh g-1 at 0.2 A g-1 with a Coulombic efficiency of 98.67%, and superior cycling stability at 0.2 A g-1 with high retention capacity of 456.34 mAh g-1 and average Coulombic efficiency of 99.19% after 300 cycles. Moreover, the high reversible capacity of 614.43, 589.49, 512.66, and 432.23 mAh g-1 is achieved at 0.5, 1, 2, and 5 A g-1, respectively, indicating the superior rate capability of the PNAF-NP anode. This work represents a great advancement in the field of SIBs by reporting a high-performance anode material.


2017 ◽  
Vol 5 (19) ◽  
pp. 9322-9328 ◽  
Author(s):  
Hongwei Tao ◽  
Min Zhou ◽  
Kangli Wang ◽  
Shijie Cheng ◽  
Kai Jiang

Benefiting from the unique structure of ultrafine NiSx nanospheres uniformly wrapped in the in situ S-doped rGO matrix, the NiSx–rGOS electrode delivers a high reversible capacity of 516 mA h g−1 at 0.2 A g−1 and a remarkable rate performance of 414 mA h g−1 at 4 A g−1, offering a low cost and high performance anode material for Na-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document