scholarly journals Kinetics of CO/CO2 and H2/H2O reactions at Ni-based and ceria-based solid-oxide-cell electrodes

2015 ◽  
Vol 182 ◽  
pp. 75-95 ◽  
Author(s):  
Christopher Graves ◽  
Christodoulos Chatzichristodoulou ◽  
Mogens B. Mogensen

The solid oxide electrochemical cell (SOC) is an energy conversion technology that can be operated reversibly, to efficiently convert chemical fuels to electricity (fuel cell mode) as well as to store electricity as chemical fuels (electrolysis mode). The SOC fuel-electrode carries out the electrochemical reactions CO2 + 2e− ↔ CO + O2− and H2O + 2e− ↔ H2 + O2−, for which the electrocatalytic activities of different electrodes differ considerably. The relative activities in CO/CO2 and H2/H2O and the nature of the differences are not well studied, even for the most common fuel-electrode material, a composite of nickel and yttria/scandia stabilized zirconia (Ni–SZ). Ni–SZ is known to be more active for H2/H2O than for CO/CO2 reactions, but the reported relative activity varies widely. Here we compare AC impedance and DC current–overpotential data measured in the two gas environments for several different electrodes comprised of Ni–SZ, Gd-doped CeO2 (CGO), and CGO nanoparticles coating Nb-doped SrTiO3 backbones (CGOn/STN). 2D model and 3D porous electrode geometries are employed to investigate the influence of microstructure, gas diffusion and impurities. Comparing model and porous Ni–SZ electrodes, the ratio of electrode polarization resistance in CO/CO2vs. H2/H2O decreases from 33 to 2. Experiments and modelling suggest that the ratio decreases due to a lower concentration of impurities blocking the three phase boundary and due to the nature of the reaction zone extension into the porous electrode thickness. Besides showing higher activity for H2/H2O reactions than CO/CO2 reactions, the Ni/SZ interface is more active for oxidation than reduction. On the other hand, we find the opposite behaviour in both cases for CGOn/STN model electrodes, reporting for the first time a higher electrocatalytic activity of CGO nanoparticles for CO/CO2 than for H2/H2O reactions in the absence of gas diffusion limitations. We propose that enhanced surface reduction at the CGOn/gas two phase boundary in CO/CO2 and in cathodic polarization can explain why the highest reaction rate is obtained for CO2 electrolysis. Large differences observed between model electrode kinetics and porous electrode kinetics are discussed.

2021 ◽  
pp. 138765
Author(s):  
F. Monaco ◽  
E. Effori ◽  
M. Hubert ◽  
E. Siebert ◽  
G. Geneste ◽  
...  

2021 ◽  
Vol 103 (1) ◽  
pp. 653-662
Author(s):  
Masashi Kishimoto ◽  
Kazuhiro Higuchi ◽  
Haewon Seo ◽  
Asuto Masuyama ◽  
Hiroshi Iwai ◽  
...  

Author(s):  
Sandipan Kumar Das

Abstract The Dusty Gas model (DGM), despite being arguably the most accurate representation of gas diffusion in electrodes, is not readily adopted in the literature as it entails relatively expensive numerical integration of differential equations for concentration polarization calculations. To address this issue, this article demonstrates an analytical procedure to solve the DGM equations in a fuel cell electrode setting. In the process, it highlights the differences with previous attempts in the literature and improves upon the shortcomings. This paper specifically provides explicit expressions of concentration overpotentials of anode-supported solid oxide fuel cells (SOFCs) for binary and ternary gas systems via the analytical solution of DGM equations in one dimension without considering the viscous effects. The model predictions match very well with the experimental data available in the open literature. This paper also provides a semi-analytical framework for higher-order multicomponent systems. Finally, the effect of the pore-size distribution in the porous electrode on the concentration polarization is thoroughly explored.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 278
Author(s):  
Bernardo F. Serôdio Costa ◽  
Blanca I. Arias-Serrano ◽  
Aleksey A. Yaremchenko

A series of strontium titanates-vanadates (STVN) with nominal cation composition Sr1-xTi1-y-zVyNizO3-δ (x = 0–0.04, y = 0.20–0.40 and z = 0.02–0.12) were prepared by a solid-state reaction route in 10% H2–N2 atmosphere and characterized under reducing conditions as potential fuel electrode materials for solid oxide fuel cells. Detailed phase evolution studies using XRD and SEM/EDS demonstrated that firing at temperatures as high as 1200 °C is required to eliminate undesirable secondary phases. Under such conditions, nickel tends to segregate as a metallic phase and is unlikely to incorporate into the perovskite lattice. Ceramic samples sintered at 1500 °C exhibited temperature-activated electrical conductivity that showed a weak p(O2) dependence and increased with vanadium content, reaching a maximum of ~17 S/cm at 1000 °C. STVN ceramics showed moderate thermal expansion coefficients (12.5–14.3 ppm/K at 25–1100 °C) compatible with that of yttria-stabilized zirconia (8YSZ). Porous STVN electrodes on 8YSZ solid electrolytes were fabricated at 1100 °C and studied using electrochemical impedance spectroscopy at 700–900 °C in an atmosphere of diluted humidified H2 under zero DC conditions. As-prepared STVN electrodes demonstrated comparatively poor electrochemical performance, which was attributed to insufficient intrinsic electrocatalytic activity and agglomeration of metallic nickel during the high-temperature synthetic procedure. Incorporation of an oxygen-ion-conducting Ce0.9Gd0.1O2-δ phase (20–30 wt.%) and nano-sized Ni as electrocatalyst (≥1 wt.%) into the porous electrode structure via infiltration resulted in a substantial improvement in electrochemical activity and reduction of electrode polarization resistance by 6–8 times at 900 °C and ≥ one order of magnitude at 800 °C.


2021 ◽  
Vol MA2021-03 (1) ◽  
pp. 235-235
Author(s):  
Masashi Kishimoto ◽  
Kazuhiro Higuchi ◽  
Haewon Seo ◽  
Asuto Masuyama ◽  
Hiroshi Iwai ◽  
...  

2020 ◽  
Vol 58 (5) ◽  
pp. 716-732
Author(s):  
A. Yu. Varaksin

2011 ◽  
Vol 311-313 ◽  
pp. 2309-2314 ◽  
Author(s):  
Wen Xia Zhu ◽  
Zhe Lü ◽  
Le Xin Wang ◽  
Xiao Yan Guan ◽  
Xin Yan Zhang

°Abstract. In order to develop new cathodes for reduced temperature SOFCs, Ba0.5Sr0.5Co0.8Fe0.2O3-δ-Ag composite cathode was investigated in intermediate-temperature Solid Oxide Fuel Cells (IT-SOFCs). The XRD results suggested that no chemical reactions between BSCF and Ag in the composite cathode were found. The resistance measurements showed that the addition of Ag into BSCF improved electrical conductivity of pure BSCF, and the improved conductivity resulted in attractive cathode performance. In addition, electrochemical impedance spectra exhibited the better performance of BSCF-Ag composite cathodes than pure BSCF, e.g., the polarization resistance value of BSCF-Ag was only 0.36Ω cm2 at 650°C, which was nearly 80% lower than that of BSCF electrode. Polarization curves showed the overpotential decreased with the addition of Ag. The current density value of BSCF-Ag was 0.88Acm-2 under –120mV, about five times of that BSCF measured at 650°C. As a summary, compared to a pure BSCF cathode, it was found that adding Ag in the cathode enhanced the BSCF performance significantly.


2020 ◽  
Vol 8 (9) ◽  
pp. 2000241
Author(s):  
Muhammad Shirjeel Khan ◽  
Xiaoyong Xu ◽  
Ruth Knibbe ◽  
Ateeq ur Rehman ◽  
Zhiheng Li ◽  
...  

2021 ◽  
Vol 293 ◽  
pp. 116901
Author(s):  
Xing-Yuan Miao ◽  
Omid Babaie Rizvandi ◽  
Maria Navasa ◽  
Henrik Lund Frandsen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document