A seed-mediated approach to the general and mild synthesis of non-noble metal nanoparticles stabilized by a metal–organic framework for highly efficient catalysis

2015 ◽  
Vol 2 (6) ◽  
pp. 606-612 ◽  
Author(s):  
Yu-Zhen Chen ◽  
Linfeng Liang ◽  
Qihao Yang ◽  
Maochun Hong ◽  
Qiang Xu ◽  
...  

A novel noble metal-seed-mediated approach to reduce non-noble metals under mild conditions to afford non-noble metal NPs with superior catalytic performance.

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1890
Author(s):  
Xiang Lai ◽  
Xuan Zhang ◽  
Shukai Li ◽  
Jie Zhang ◽  
Weifeng Lin ◽  
...  

Water soluble organic molecular pollution endangers human life and health. It becomes necessary to develop highly stable noble metal nanoparticles without aggregation in solution to improve their catalytic performance in treating pollution. Polyethyleneimine (PEI)-based stable micelles have the potential to stabilize noble metal nanoparticles due to the positive charge of PEI. In this study, we synthesized the amphiphilic PEI-oleic acid molecule by acylation reaction. Amphiphilic PEI-oleic acid assembled into stable PEI-oleic acid micelles with a hydrodynamic diameter of about 196 nm and a zeta potential of about 34 mV. The PEI-oleic acid micelles-stabilized palladium nanoparticles (PO-PdNPsn) were prepared by the reduction of sodium tetrachloropalladate using NaBH4 and the palladium nanoparticles (PdNPs) were anchored in the hydrophilic layer of the micelles. The prepared PO-PdNPsn had a small size for PdNPs and good stability in solution. Noteworthily, PO-PdNPs150 had the highest catalytic activity in reducing 4-nitrophenol (4-NP) (Knor = 18.53 s−1mM−1) and oxidizing morin (Knor = 143.57 s−1M−1) in aqueous solution than other previous catalysts. The enhanced property was attributed to the improving the stability of PdNPs by PEI-oleic acid micelles. The method described in this report has great potential to prepare many kinds of stable noble metal nanoparticles for treating aqueous pollution.


2018 ◽  
Vol 9 ◽  
pp. 2763-2774 ◽  
Author(s):  
Alexander Rostek ◽  
Marina Breisch ◽  
Kevin Pappert ◽  
Kateryna Loza ◽  
Marc Heggen ◽  
...  

For a comparative cytotoxicity study, nanoparticles of the noble metals Rh, Pd, Ag, Pt, and Au (spherical, average diameter 4 to 8 nm) were prepared by reduction in water and colloidally stabilized with poly(N-vinyl pyrrolidone) (PVP). Thus, their shape, size, and surface functionalization were all the same. Size and morphology of the nanoparticles were determined by dynamic light scattering (DLS), analytical disc centrifugation (differential centrifugal sedimentation, DCS), and high-resolution transmission electron microscopy (HRTEM). Cell-biological experiments were performed to determine the effect of particle exposure on the viability of human mesenchymal stem cells (hMSCs). Except for silver, no adverse effect of any of the metal nanoparticles was observed for concentrations up to 50 ppm (50 mg L−1) incubated for 24 h, indicating that noble metal nanoparticles (rhodium, palladium, platinum, gold) that do not release ions are not cytotoxic under these conditions.


2021 ◽  
Vol 21 (5) ◽  
pp. 3107-3114
Author(s):  
Zhuo-Rui Li ◽  
Geng Zhu ◽  
Guo-Zhi Han

We firstly discover the enhanced catalytic activity of magnetic noble metal nanoparticles mediated by surface plasmon resonance. Under light irradiation with certain wavelength, the catalytic performance of magnetic noble metal nanoparticles shows changes with different degrees and directions that are associated with the surface plasmon resonance (SPR) of the noble metal. Moreover, the coupling of silver and gold allows the catalytic performance of magnetic bimetallic Ag–Au nanoparticles to show more positive response to surface plasmon resonance. The magnetic bimetallic Ag–Au nanoparticles show excellent catalytic performance toward the reduction reaction of aromatic nitro group, and corresponding rate constant of the catalytic reduction reaction increases about three times with light irradiation.


RSC Advances ◽  
2016 ◽  
Vol 6 (101) ◽  
pp. 99096-99104 ◽  
Author(s):  
H. Ramezanalizadeh ◽  
F. Manteghi

In this work, a novel metal–organic framework based composite with BiFeO3 noted as MOF/BiFeO3 has been synthesized and successfully employed as a highly efficient heterogeneous and recoverable catalyst for oxidation of alcohols under mild conditions.


2016 ◽  
Vol 18 (8) ◽  
pp. 2341-2352 ◽  
Author(s):  
Lu Chen ◽  
Jiayu Xin ◽  
Lingli Ni ◽  
Huixian Dong ◽  
Dongxia Yan ◽  
...  

A novel pseudo-homogeneous catalyst system consisting of noble metal nanoparticles and ionic liquids is developed for the selective reductive cleavage of C–O and hydrodeoxygenation under mild conditions.


Sign in / Sign up

Export Citation Format

Share Document