vinyl pyrrolidone
Recently Published Documents


TOTAL DOCUMENTS

1081
(FIVE YEARS 166)

H-INDEX

58
(FIVE YEARS 8)

Gels ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 27
Author(s):  
Maria Demeter ◽  
Ion Călina ◽  
Anca Scărișoreanu ◽  
Marin Micutz

In the present study, we report on the complex hydrogels formulations based on collagen-poly(vinyl pyrrolidone) (PVP)-poly(ethylene oxide) (PEO) cross-linked by e-beam irradiation in an aqueous polymeric solution, aiming to investigate the influence of different PEO concentrations on the hydrogel properties. The hydrogel networks’ structure and their composition were investigated using equilibrium swelling degree, complex rheological analysis, and FT-IR spectroscopy. Rheological analysis was performed to determine the elastic (G′) and viscous (G″) moduli, the average molecular weight between cross-linking points (Mc), cross-link density (Ve), and the mesh size (ξ). The effect of the PEO concentration on the properties of the hydrogel was investigated as well. Depending on the PEO concentration added in their composition, the hydrogels swelling degree depends on the absorbed dose, being lower at low PEO concentrations. All hydrogel formulations showed higher G′ values (9.8 kPa) compared to G″ values (0.2 kPa), which shows that the hydrogels have a predominantly elastic behavior. They presented stability greater than 72 h in physiological pH buffers and reached equilibrium after 25 h. The Mc parameter is strongly dependent on the PEO concentration and the absorbed dose for all hydrogel compositions. The cross-linking density increased with the absorbed dose.


Author(s):  
Muhammad Iqbal Nasiri ◽  
Lalitkumar K. Vora ◽  
Juhaina Abu Ershaid ◽  
Ke Peng ◽  
Ismaiel A. Tekko ◽  
...  

AbstractThe development of dissolving microneedles (DMN) is one of the advanced technologies in transdermal drug delivery systems, which precisely deliver the drugs through a rapid dissolution of polymers after insertion into the skin. In this study, we fabricated nanoemulsion-loaded dissolving microneedle (DMN) arrays for intradermal and transdermal drug delivery. For this task, model drug (amphotericin B, AmB)-loaded nanoemulsion (NE) were prepared by the probe-sonication method. AmB-loaded-NE was prepared using Capmul MCM C-8 EP/NF, Tween® 80, poly(vinyl alcohol) (PVA-10 kDa), and poly (vinyl pyrrolidone) (PVP-360 kDa or K29/32) by using SpeedMixer™, followed by probe-sonication and evaluated for particle size and polydispersity index (PDI). Transmission electron microscopy (TEM) was also used to assess the particle size before and after DMN casting. AmB-NE embedded DMN arrays were found to be strong enough, revealed efficient skin insertion, and penetrated down to the fourth layer (depth ≈ 508 μm) of Parafilm M® (validated skin model). Ex vivo skin deposition experiments in full-thickness neonatal porcine demonstrated that after 24 h, AmB-NE-DMN arrays were able to deposit 111.05 ± 48.4 µg/patch AmB into the skin. At the same time, transdermal porcine skin permeation studies showed significantly higher permeability of AmB (29.60 ± 8.23 μg/patch) from AmB-NE-DMN compared to MN-free AmB-NE patches (5.0 ± 6.15 μg/patch) over 24 h. Antifungal studies of optimized AmB-NE-DMN, AmB-loaded discs and drug-free DMN against Candida albicans, confirmed the synergistic activity of Campul-MCM C-8, used in the nanoemulsion formulation. This study establishes that nanoemulsion based dissolving microneedle may serve as an efficient system for intradermal as well as transdermal drug delivery. Graphical abstract


Author(s):  
Aseel Kadhem Thamer ◽  
Ahmed Najem Abood

         Aceclofenac (AC) is an orally active phenyl acetic acid derivative, non-steroidal anti-inflammatory drug with exceptional anti-inflammatory, analgesic and antipyretic properties. It has low aqueous solubility, leading to slow dissolution, low permeability and inadequate bioavailability. The aim of the current study was to prepare and characterize AC-NS-based gel to enhance the dissolution rate and then percutaneous permeability. NS.s were prepared using solvent/antisovent precipitation method at different drug to polymer ratios (1:1, 1:2, and 1:3) using different polymers such as poly vinyl pyrrolidone (PVP-K25), hydroxy propyl methyl cellulose (HPMC-E5) and poloxamer® (388) as stabilizers alone and in combinations of two polymers (1:2 and 1:4 Drug: polymer ratio). Fifteen formulas of AC-NS.s were prepared and characterized for production yield, loading efficiency, particle size, polydispersity index and physical stability. The best formulas of NS were then lyophilized to be characterized by FTIR, DSC, P-XRD and SEM. After that, the best prepared formula of AC-NS regarding the involved characterization methods was incorporated in gel dosage forms using carbopol®940. From this study, we conclude that the dissolution rate and permeability of AC were improved when the particle size was reduced to Nano-scale as compared with pure drug.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012031
Author(s):  
R Mohammed ◽  
H Jawad ◽  
A. Al-Zubiedy

Abstract The use of polymeric blended nanofibres is one of the recent applications in the food and liquid packaging. The current research aims to prepare the nanofibers coatings from the blend of polymeric materials via the electro spinning technique 0.08 weight ratio concentration of polyvinyl alcohol (PVA) dissolved in water, as well as, (0.2 weight ratio concentration ) of poly vinyl pyrrolidone (PVP) were used to obtain different volume proportions of (PVA:PVP) solutions include (100:0, 80:20,70:30, 50:50, 20:80, and 0:100). The electro spinning system was organized with pumping conditions (20 kV for the applied voltage, 20 cm pumping distance, 1ml/hr pumping rate) and a needle diameter with 0.4mm diameter. The properties of the polymeric solutions involve (viscosity, surface tension, and electrical conductivity of the liquid) were examined. A scanning electron microscope technique was used to study the surface properties of the prepared films, and the contact angle via the contact angle analyzer was examined. The results of a scanning electron microscope proved that the diameter of the nano fibers increases with increasing the concentration and viscosity of solutions and decreasing its electrical conductivity. Also, the results of the contact angle analyzer showed an increase the hydrophilic property via increasing percentage of polyvinylpyrrolidone.


2021 ◽  
Author(s):  
Hassan A. H. Alzahrani

Abstract Copper dioxide (CuO) nanoparticles and Multiwall carbon nanotubes (MWCNTs) filled poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) blend matrix (50/50 wt%) based polymer nanocomposites (PNCs) (i.e., PVA/PVP:(15-x)CuO(x)MWCNTs for x=0,1,5,7.5, 10,14, and 15wt%) have been prepared employing the solution-cast method. The morphologies of these PNCs are semicrystalline, according to an X-ray diffraction investigation. The FTIR, SEM, and AFM measurements of PNCs were used to investigate the development of the miscible mix, polymer-polymer and polymer–nanoparticle interactions, and the influence of CuO and MWCNTs nanofillers on the morphology aspects on the main chain of PVA/PVP blend. The nanofiller dispersion signposting for x=14 wt% nanoloading in the PVA–PVP blend matrix significantly enhances the crystalline phase, diminishing the optical energy gap to 2.31eV. The DC conductivity values augment with the upsurge in nanofiller level for maximum x=14wt%. The dielectric and electrical characteristics of these PNCs are investigated for an applied frequency range from 1kHz to 1 MHz. The enhancement in the nanofiller level upto x=14wt% in the PVA/PVP matrix leads to the development of percolating network through the PNCs. These factors boost the dielectric permittivity values substantially, owing to the decrease in the nano-confinement phenomenon. The rise in applied frequency reduces dielectric permittivity and impedance values and enhances ac electrical conductivity. These PNCs having good dielectric and electrical characteristics can be used as frequency tunable nanodielectric material in electronic devices.


2021 ◽  
Vol 28 (12) ◽  
Author(s):  
Mohammed S. Al Mogbel ◽  
Mohamed T. Elabbasy ◽  
Rasha S. Mohamed ◽  
A. E. Ghoniem ◽  
M. F. H. Abd El-Kader ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document