scholarly journals Multifunctional hyperbranched polymers for CT/19F MRI bimodal molecular imaging

2016 ◽  
Vol 7 (5) ◽  
pp. 1059-1069 ◽  
Author(s):  
Kewei Wang ◽  
Hui Peng ◽  
Kristofer J. Thurecht ◽  
Simon Puttick ◽  
Andrew K. Whittaker

Multifunctional hyperbranched polymers containing iodine and fluorine were synthesised by reversible addition–fragmentation chain transfer (RAFT) polymerisation, and evaluated as novel contrast agents for CT/19F MRI bimodal molecular imaging.

2015 ◽  
Vol 6 (45) ◽  
pp. 7871-7880 ◽  
Author(s):  
Sunirmal Pal ◽  
Megan R. Hill ◽  
Brent S. Sumerlin

Thermo- and redox-responsive hyperbranched copolymers were prepared by statistical copolymerization of N-isopropylacrylamide (NIPAM) and N,N′-bis(acryloyl)cystamine (BAC) by reversible addition–fragmentation chain transfer (RAFT) polymerization.


2014 ◽  
Vol 67 (1) ◽  
pp. 103 ◽  
Author(s):  
Zhulin Weng ◽  
Yaochen Zheng ◽  
Aijin Tang ◽  
Chao Gao

A novel kind of amphiphilic hyperbranched polymer (AHP), poly(2-(dimethylamino)ethyl methacrylate)-co-polystyrene (HPTAM-co-PS), was synthesized via the combination of reversible addition–fragmentation chain-transfer polymerization and self-condensing vinyl polymerization (RAFT-SCVP). HPTAM-co-PS was functionalized via the highly efficient Menschutkin click reaction, resulting in hyperbranched poly(propargyl quaternary ammonium methacrylate)-co-polystyrene (HPPrAM-co-PS) with a hydrophilic quaternary ammonium salt core and hydrophobic PS shell. The average numbers of dye molecules trapped by each molecule of HPPrAM-co-PS (24.2 kDa) were 24.1 for methyl orange (MO), 22.0 for fluorescein sodium (FS), 24.2 for rose bengal (RB), and 238.4 for Congo red (CR). The polymer–dye complexes show excellent colouring effects for both PS and poly(styrene-b-butadiene-b-styrene) (SBS) membranes; the colour of the membrane containing AHP is very stable and uniform. Our work opens an avenue for the design of efficient dye-colouring additives and for the application of hyperbranched polymers in the field of polymer colouring.


2010 ◽  
Vol 11 (4) ◽  
pp. 1052-1059 ◽  
Author(s):  
Stacey Kirkland-York ◽  
Yilin Zhang ◽  
Adam E. Smith ◽  
Adam W. York ◽  
Faqing Huang ◽  
...  

2021 ◽  
Author(s):  
Siva Ponnupandian ◽  
Prantik Mondal ◽  
Thomas Becker ◽  
Richard Hoogenboom ◽  
Andrew B Lowe ◽  
...  

This investigation reports the preparation of a tailor-made copolymer of furfuryl methacrylate (FMA) and trifluoroethyl methacrylate (TFEMA) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The furfuryl groups of the copolymer...


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 317-327
Author(s):  
Chenliang Shi ◽  
Ling Lin ◽  
Yukun Yang ◽  
Wenjia Luo ◽  
Maoqing Deng ◽  
...  

AbstractThe influence of density of amino groups, nanoparticles dimension and pH on the interaction between end-functionalized polymers and nanoparticles was extensively investigated in this study. PS–NH2 and H2N–PS–NH2 were prepared using reversible addition–fragmentation chain transfer polymerization and atom transfer radical polymerization. Zero-dimensional carbon dots with sulfonate groups, one-dimensional cellulose nanocrystals with sulfate groups and two-dimensional graphene with sulfonate groups in the aqueous phase were added into the toluene phase containing the aminated PS. The results indicate that aminated PS exhibited the strongest interfacial activity after compounding with sulfonated nanoparticles at a pH of 3. PS ended with two amino groups performed better in reducing the water/toluene interfacial tension than PS ended with only one amino group. The dimension of sulfonated nanoparticles also contributed significantly to the reduction in the water/toluene interfacial tension. The minimal interfacial tension was 4.49 mN/m after compounding PS–NH2 with sulfonated zero-dimensional carbon dots.


Sign in / Sign up

Export Citation Format

Share Document