Synthesis and Properties of Multi-stimuli-Responsive Water-Soluble Hyperbranched Polymers Prepared Via Reversible Addition–Fragmentation Chain Transfer Self-Condensing Vinyl Polymerization

Author(s):  
Sahand Rahemipoor ◽  
Mohammad Kohestanian ◽  
Ali Pourjavadi ◽  
Hossein Heidarzadeh Vazifehkhorani ◽  
Mehdi Mehrali
Langmuir ◽  
2003 ◽  
Vol 19 (14) ◽  
pp. 5559-5562 ◽  
Author(s):  
Brent S. Sumerlin ◽  
Andrew B. Lowe ◽  
Paul A. Stroud ◽  
Ping Zhang ◽  
Marek W. Urban ◽  
...  

2015 ◽  
Vol 6 (45) ◽  
pp. 7871-7880 ◽  
Author(s):  
Sunirmal Pal ◽  
Megan R. Hill ◽  
Brent S. Sumerlin

Thermo- and redox-responsive hyperbranched copolymers were prepared by statistical copolymerization of N-isopropylacrylamide (NIPAM) and N,N′-bis(acryloyl)cystamine (BAC) by reversible addition–fragmentation chain transfer (RAFT) polymerization.


2016 ◽  
Vol 12 ◽  
pp. 2378-2389 ◽  
Author(s):  
Judita Britner ◽  
Helmut Ritter

The first detailed study on free-radical polymerization, copolymerization and controlled radical polymerization of the cyclic push–pull-type monomer methylenelactide in comparison to the non-cyclic monomer α-acetoxyacrylate is described. The experimental results revealed that methylenelactide undergoes a self-initiated polymerization. The copolymerization parameters of methylenelactide and styrene as well as methyl methacrylate were determined. To predict the copolymerization behavior with other classes of monomers, Q and e values were calculated. Further, reversible addition fragmentation chain transfer (RAFT)-controlled homopolymerization of methylenelactide and copolymerization with N,N-dimethylacrylamide was performed at 70 °C in 1,4-dioxane using AIBN as initiator and 2-(((ethylthio)carbonothioyl)thio)-2-methylpropanoic acid as a transfer agent.


2009 ◽  
Vol 62 (11) ◽  
pp. 1501 ◽  
Author(s):  
Ewan Sprong ◽  
Hank De Bruyn ◽  
Christopher H. Such ◽  
Brian S. Hawkett

Recent advances in the use of reversible addition–fragmentation chain transfer (RAFT) polymerization in dispersed phase systems have paved the way for the fine control of the morphology of latex particles that was not possible by conventional free radical polymerization techniques. With this approach, living amphiphilic block copolymers are synthesized that self-assemble to form micelles. The hydrophilic segment is formed from a water-soluble monomer which stabilizes the latex particles as polymerization proceeds and the latex particles grow. The hydrophobic ends of the RAFT diblocks ultimately grow into the polymer that forms the body of the particles. This paper presents examples of ways in which these advances can be used to engineer latex particles with unique morphologies that exhibit specific application properties.


2016 ◽  
Vol 7 (5) ◽  
pp. 1059-1069 ◽  
Author(s):  
Kewei Wang ◽  
Hui Peng ◽  
Kristofer J. Thurecht ◽  
Simon Puttick ◽  
Andrew K. Whittaker

Multifunctional hyperbranched polymers containing iodine and fluorine were synthesised by reversible addition–fragmentation chain transfer (RAFT) polymerisation, and evaluated as novel contrast agents for CT/19F MRI bimodal molecular imaging.


Sign in / Sign up

Export Citation Format

Share Document