Redox-controlled upper critical solution temperature behaviour of a nitroxide containing polymer in alcohol–water mixtures

2016 ◽  
Vol 7 (5) ◽  
pp. 1088-1095 ◽  
Author(s):  
Olivier Bertrand ◽  
Alexandru Vlad ◽  
Richard Hoogenboom ◽  
Jean-François Gohy

Research on stimuli responsive polymers builds momentum as nature-inspired applications using man-made materials are increasingly sought.

2017 ◽  
Vol 8 (1) ◽  
pp. 220-232 ◽  
Author(s):  
Jukka Niskanen ◽  
Heikki Tenhu

In this mini-review, we discuss multi-stimuli-responsive polymers, which exhibit upper critical solution temperature (UCST) behavior mainly in aqueous solutions, and focus on examples where counter ions, electricity, light, or pH influence the thermoresponsiveness of these polymers.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 329
Author(s):  
Seidai Okada ◽  
Eriko Sato

Coumarin-containing vinyl homopolymers, such as poly(7-methacryloyloxycoumarin) (P1a) and poly(7-(2′-methacryloyloxyethoxy)coumarin) (P1b), show a lower critical solution temperature (LCST) in chloroform, which can be controlled by the [2 + 2] photochemical cycloaddition of the coumarin moiety, and they are recognized as monofunctional dual-stimuli-responsive polymers. A single functional group of monofunctional dual-stimuli-responsive polymers responds to dual stimuli and can be introduced more uniformly and densely than those of dual-functional dual-stimuli-responsive polymers. In this study, considering a wide range of applications, organogels consisting of P1a and P1b, i.e., P1a-gel and P1b-gel, respectively, were synthesized, and their thermo- and photoresponsive behaviors in chloroform were investigated in detail. P1a-gel and P1b-gel in a swollen state (transparent) exhibited phase separation (turbid) through a temperature jump and reached a shrunken state (transparent), i.e., an equilibrium state, over time. Moreover, the equilibrium degree of swelling decreased non-linearly with increasing temperature. Furthermore, different thermoresponsive sites were photopatterned on the organogel through the photodimerization of the coumarin unit. The organogels consisting of homopolymers of coumarin-containing methacrylate exhibited unique thermo- and photoresponsivities and behaved as monofunctional dual-stimuli-responsive organogels.


2019 ◽  
Vol 13 (11) ◽  
pp. 974-992 ◽  
Author(s):  
K. K. Bansal ◽  
P. K. Upadhyay ◽  
G. K. Saraogi ◽  
A. Rosling ◽  
J. M. Rosenholm

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 956 ◽  
Author(s):  
Sotaro Tsuji ◽  
Tomohiro Aoki ◽  
Shunsuke Ushio ◽  
Tomonari Tanaka

Stimuli-responsive polymers have attracted significant interest in the fields of advanced materials and biomaterials. Herein, temperature- and pH-responsive glycopolymers, which are composed of N-isopropylacrylamide, methacrylic acid, and an acrylamide derivative bearing a lactose moiety, were synthesized via radical copolymerization. The series of resulting glycopolymers had different degrees of substitution of the lactose moieties, were responsive to temperatures between 26.6 °C and 47.6 °C, and formed aggregates above the lower critical solution temperature limit in mild acidic aqueous media (pH 4–6). The temperature-responsive behavior was dependent on the prevailing pH conditions, as no aggregation was observed in neutral and basic aqueous media (pH > 7). The aggregates had saccharide moieties on the surface in aqueous media. The number of saccharide moieties on the surface depended on the saccharide-containing unit ratio in the glycopolymer. The ratio was determined via enzymatic hydrolysis of the lactose moieties using β-galactosidase and the subsequent detection of the released galactose.


Sign in / Sign up

Export Citation Format

Share Document