scholarly journals Thermo- and Photoresponsive Behaviors of Dual-Stimuli-Responsive Organogels Consisting of Homopolymers of Coumarin-Containing Methacrylate

Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 329
Author(s):  
Seidai Okada ◽  
Eriko Sato

Coumarin-containing vinyl homopolymers, such as poly(7-methacryloyloxycoumarin) (P1a) and poly(7-(2′-methacryloyloxyethoxy)coumarin) (P1b), show a lower critical solution temperature (LCST) in chloroform, which can be controlled by the [2 + 2] photochemical cycloaddition of the coumarin moiety, and they are recognized as monofunctional dual-stimuli-responsive polymers. A single functional group of monofunctional dual-stimuli-responsive polymers responds to dual stimuli and can be introduced more uniformly and densely than those of dual-functional dual-stimuli-responsive polymers. In this study, considering a wide range of applications, organogels consisting of P1a and P1b, i.e., P1a-gel and P1b-gel, respectively, were synthesized, and their thermo- and photoresponsive behaviors in chloroform were investigated in detail. P1a-gel and P1b-gel in a swollen state (transparent) exhibited phase separation (turbid) through a temperature jump and reached a shrunken state (transparent), i.e., an equilibrium state, over time. Moreover, the equilibrium degree of swelling decreased non-linearly with increasing temperature. Furthermore, different thermoresponsive sites were photopatterned on the organogel through the photodimerization of the coumarin unit. The organogels consisting of homopolymers of coumarin-containing methacrylate exhibited unique thermo- and photoresponsivities and behaved as monofunctional dual-stimuli-responsive organogels.

2017 ◽  
Vol 8 (1) ◽  
pp. 220-232 ◽  
Author(s):  
Jukka Niskanen ◽  
Heikki Tenhu

In this mini-review, we discuss multi-stimuli-responsive polymers, which exhibit upper critical solution temperature (UCST) behavior mainly in aqueous solutions, and focus on examples where counter ions, electricity, light, or pH influence the thermoresponsiveness of these polymers.


2016 ◽  
Vol 7 (5) ◽  
pp. 1088-1095 ◽  
Author(s):  
Olivier Bertrand ◽  
Alexandru Vlad ◽  
Richard Hoogenboom ◽  
Jean-François Gohy

Research on stimuli responsive polymers builds momentum as nature-inspired applications using man-made materials are increasingly sought.


e-Polymers ◽  
2017 ◽  
Vol 17 (5) ◽  
pp. 399-408 ◽  
Author(s):  
Pedro Hernández ◽  
Armando Lucero-Acuña ◽  
Cindy Alejandra Gutiérrez-Valenzuela ◽  
Ramón Moreno ◽  
Reynaldo Esquivel

AbstractThe interesting properties of stimuli-responsive polymers lead to a wide range of possibilities in design and engineering of functional material for the biomedical application. A systematic approach focused on the evaluation of the physical properties of multiresponse (pH and temperature) PNIPAM was reported in this work. The effect of three different molar ratios of poly(n-isopropylacrylamide): chitosan (1:49, 1:99 and 1:198) were evaluated and labeled correspondingly as PC1F, PC2F, and PC3F. An increase in the lower critical solution temperature (LCST) of sample PC1F (34°C) was observed by differential scanning calorimetry (DSC). The presence of low molecular weight chitosan (LMWC) full-interpenetrating polymer (Full-IPN) segments in poly(n-isopropylacrylamide) was confirmed by Fourier-transform infrared spectroscopy (FT-IR). The hydrogel’s water capture was analyzed by two models of swelling, the power law model and a model that considers the relaxation of polymeric chains of the hydrogel, finding good correlations with experimental data in both cases. Sample PC3F resulted with higher swellability, increasing the weight of the hydrogel around seven times. Hydrogel pH-sensibility was confirmed placing the samples at different pH environments, with an apparent increase in swellability for acidic conditions, confirming the highest swellability for sample PC3F, due to hydrogen bonds boosted by chitosan high molar ratio. Based on these results, the hydrogel obtained has potential as a thermo-pH triggered hydrogel in drug delivery applications.


2019 ◽  
Vol 10 (24) ◽  
pp. 3362-3370 ◽  
Author(s):  
Zhijun Yang ◽  
Fenfen Wang ◽  
Chi Zhang ◽  
Jian Li ◽  
Rongchun Zhang ◽  
...  

High-performance stimuli-responsive polymers that exhibit spontaneous, sophisticated and reversible responses to a wide range of external stimuli are reported, adapting a stimuli-responsive dynamic covalent chemical crosslinker and a biomimetic modular polymer design.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 956 ◽  
Author(s):  
Sotaro Tsuji ◽  
Tomohiro Aoki ◽  
Shunsuke Ushio ◽  
Tomonari Tanaka

Stimuli-responsive polymers have attracted significant interest in the fields of advanced materials and biomaterials. Herein, temperature- and pH-responsive glycopolymers, which are composed of N-isopropylacrylamide, methacrylic acid, and an acrylamide derivative bearing a lactose moiety, were synthesized via radical copolymerization. The series of resulting glycopolymers had different degrees of substitution of the lactose moieties, were responsive to temperatures between 26.6 °C and 47.6 °C, and formed aggregates above the lower critical solution temperature limit in mild acidic aqueous media (pH 4–6). The temperature-responsive behavior was dependent on the prevailing pH conditions, as no aggregation was observed in neutral and basic aqueous media (pH > 7). The aggregates had saccharide moieties on the surface in aqueous media. The number of saccharide moieties on the surface depended on the saccharide-containing unit ratio in the glycopolymer. The ratio was determined via enzymatic hydrolysis of the lactose moieties using β-galactosidase and the subsequent detection of the released galactose.


2020 ◽  
Vol 11 (24) ◽  
pp. 3940-3950 ◽  
Author(s):  
Patrick Verkoyen ◽  
Holger Frey

Amino-functional polyethers have emerged as a new class of “smart”, i.e. pH- and thermoresponsive materials. This review article summarizes the synthesis and applications of these materials, obtained from ring-opening of suitable epoxide monomers.


2013 ◽  
Vol 13 (9) ◽  
pp. 1369-1380 ◽  
Author(s):  
Guangyan Qing ◽  
Minmin Li ◽  
Lijing Deng ◽  
Ziyu Lv ◽  
Peng Ding ◽  
...  

2021 ◽  
Vol 5 (4) ◽  
pp. 101
Author(s):  
Menglian Wei ◽  
Yu Wan ◽  
Xueji Zhang

Metal-organic framework (MOF) based stimuli-responsive polymers (coordination polymers) exhibit reversible phase-transition behavior and demonstrate attractive properties that are capable of altering physical and/or chemical properties upon exposure to external stimuli, including pH, temperature, ions, etc., in a dynamic fashion. Thus, their conformational change can be imitated by the adsorption/desorption of target analytes (guest molecules), temperature or pressure changes, and electromagnetic field manipulation. MOF-based stimuli responsive polymers have received great attention due to their advanced optical properties and variety of applications. Herein, we summarized some recent progress on MOF-based stimuli-responsive polymers (SRPs) classified by physical and chemical responsiveness, including temperature, pressure, electricity, pH, metal ions, gases, alcohol and multi-targets.


Author(s):  
Yusen Zhao ◽  
Mutian Hua ◽  
Yichen Yan ◽  
Shuwang Wu ◽  
Yousif Alsaid ◽  
...  

This article reviews recent progress in the use of stimuli-responsive polymers for soft robotics. First, we introduce different types of representative stimuli-responsive polymers, which include liquid crystal polymers and elastomers, hydrogels, shape memory polymers, magnetic elastomers, electroactive polymers, and thermal expansion actuators. We focus on the mechanisms of actuation and the evaluation of performance and discuss strategies for improvements. We then present examples of soft robotic applications based on stimuli-responsive polymers for bending, grasping, walking, swimming, flying, and sensing control. Finally, we discuss current opportunities and challenges of stimuli-responsive soft robots for future study. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 5 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document