Synthesis of cadmium oxide and carbon nanotube based nanocomposites and their use as a sensing interface for xanthine detection

RSC Advances ◽  
2015 ◽  
Vol 5 (38) ◽  
pp. 29675-29683 ◽  
Author(s):  
U. Jain ◽  
J. Narang ◽  
K. Rani ◽  
Burna Burna ◽  
Sunny Sunny ◽  
...  

Xanthine oxidase (XOD) was immobilized covalently via carbodiimide chemistry onto cadmium oxide nanoparticles (CdO)/carboxylated multiwalled carbon nanotube (c-MWCNT) composite film electrodeposited onto Au electrode.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Min Chao ◽  
Yanming Li ◽  
Guanglei Wu ◽  
Zhenjun Zhou ◽  
Luke Yan

Polyimide- (PI-) based nanocomposites containing the 4,4′-diaminodiphenyl ether- (ODA-) modified multiwalled carbon nanotube (MWCNT) filler were successfully prepared. The PI/MWCNTs-ODA composite films exhibit high thermal conductivity and excellent mechanical property. The optimal value of thermal conductivity of the PI/MWCNTs-ODA composite film is 0.4397 W/mK with 3 wt.% filler loading, increased by 221.89% in comparison with that of the pure PI film. In addition, the tensile strength of the PI/MWCNTs-ODA composite film is 141.48 MPa with 3 wt.% filler loading, increased by 20.74% in comparison with that of the pure PI film. This work develops a new strategy to achieve a good balance between the high thermal conductivity and excellent mechanical properties of polyimide composite films by using functionalized carbon nanotubes as an effective thermal conductive filler.


Sign in / Sign up

Export Citation Format

Share Document