Fabrication of acrylic acid grafted guar gum-multiwalled carbon nanotube hydrophobic membranes for transdermal drug delivery

RSC Advances ◽  
2015 ◽  
Vol 5 (52) ◽  
pp. 41736-41744 ◽  
Author(s):  
Arindam Giri ◽  
Tridib Bhunia ◽  
Luna Goswami ◽  
Asit Baran Panda ◽  
Abhijit Bandyopadhyay

Environmentally stable acrylic acid grafted guar gum-carboxy functionalized multiwalled carbon nanotube in situ composite membranes have been developed and characterized for sustained release of a hydrophobic drug, diclofenac sodium.

RSC Advances ◽  
2013 ◽  
Vol 3 (37) ◽  
pp. 16509 ◽  
Author(s):  
Mukesh Sharma ◽  
Dibyendu Mondal ◽  
Chandrakant Mukesh ◽  
Kamalesh Prasad

2020 ◽  
Vol 54 (23) ◽  
pp. 3447-3456
Author(s):  
Dongouk Kim ◽  
Sang-Eui Lee ◽  
Yoonchul Sohn

Polymer composites with a high electrical conductivity ( σ) to thermal conductivity ( k) ratio have been intensively investigated in recent years. While highly conductive materials, such as metallic fillers or conducting polymers, were used to enhance σ, microstructural engineering was used to decrease k by forming porous structures, such as aerogels or 3D networks. These structures, however, were mechanically vulnerable and could only have limited applications. In this study, multiwalled carbon nanotube /silicone composites with a high σ/k ratio were developed by forming a double-segregated multiwalled carbon nanotube network in the porous body of the composites. The unique microstructure of the composites was created by a novel fabrication process: layer-by-layer deposition with in-situ polymerization of silicone emulsion particles dispersed in a water solvent. This novel process yielded very thick films, >200 µm, with high σ/k values, ∼2 × 104 (S/m)/(W/m·K). These high σ/k composites can be used for various applications, such as resistive heating elements, thermoelectric materials, and wearable thermotherapy.


2018 ◽  
Vol 25 (1) ◽  
pp. 25-29
Author(s):  
Jiachun Zhong ◽  
Heng Guo ◽  
Jian Yang ◽  
Xiaobo Liu

AbstractPoly(arylene ether nitrile) (PEN)-functionalized multiwalled carbon nanotube (MWNT) composites were successfully prepared via anin situpolymerization method based on the combination of nucleophilic aromatic substitution polymerization with simple acylate-functionalized MWNTs (MWNTs-COCl) in the presence of nitrile monomers. The structure and morphology of PEN-MWNT composites were characterized using Fourier transform infrared spectroscopy and scanning electron microscopy, respectively. The improvement in the thermal stability and mechanical properties of PEN-MWNT films was achieved because of the good-quality dispersion of MWNTs and strong interfacial interaction between the PEN matrix and MWNTs. The most important result is that the dielectric constant and electrical conductivity can be remarkably enhanced by a high MWNT content.


2007 ◽  
Vol 124-126 ◽  
pp. 1133-1136 ◽  
Author(s):  
Hun Sik Kim ◽  
Byung Hyun Park ◽  
Jin San Yoon ◽  
Hyoung Joon Jin

Poly(ε-caprolactone)/multiwalled carbon nanotube (PCL/MWCNT) composites with different MWCNT contents were successfully prepared by in situ bulk polymerization, which could make them good competitors for commodity materials such as general purpose plastics, while allowing them to completely retain their biodegradability. The mechanical properties of the PCL/MWCNT composites were effectively increased due to the incorporation of the MWCNTs. The composites were characterized using scanning electron microscopy, in order to obtain information on the dispersion of the MWCNTs in the polymeric matrix. In the case where 0.5 wt% of MWCNTs were dispersed in the matrix, the strength and modulus of the composite increased by 23% and 71%, respectively. In addition, the dispersion of the MWCNTs in the PCL matrix resulted in a substantial decrease in the electrical resistivity of the composites being observed as the MWCNTs loading was increased from 0 wt% to 0.5 wt%.


Sign in / Sign up

Export Citation Format

Share Document