A phosphoric acid-doped electrocatalyst supported on poly(para-pyridine benzimidazole)-wrapped carbon nanotubes shows a high durability and performance

2015 ◽  
Vol 3 (27) ◽  
pp. 14318-14324 ◽  
Author(s):  
Zehui Yang ◽  
Tsuyohiko Fujigaya ◽  
Naotoshi Nakashima

Low fuel cell performance and durability are still the two main obstacles to the commercialization of high-temperature polymer electrolyte fuel cells.

2015 ◽  
Vol 3 (46) ◽  
pp. 23316-23322 ◽  
Author(s):  
Zehui Yang ◽  
Naotoshi Nakashima

Low durability and performance have limited the wide commercialization of high-temperature polymer electrolyte fuel cells (HT-PEFCs).


2019 ◽  
Vol 21 (24) ◽  
pp. 13126-13134 ◽  
Author(s):  
J. Halter ◽  
T. Gloor ◽  
B. Amoroso ◽  
T. J. Schmidt ◽  
F. N. Büchi

The influence of phosphoric acid temperature and concentration on the wetting behavior of porous high temperature polymer electrolyte fuel cell materials is investigated.


2015 ◽  
Vol 3 (27) ◽  
pp. 14389-14400 ◽  
Author(s):  
Dirk Henkensmeier ◽  
Ngoc My Hanh Duong ◽  
Mateusz Brela ◽  
Karol Dyduch ◽  
Artur Michalak ◽  
...  

Tetrazole (TZ) has lower basicity than imidazole and may not be fully protonated by phosphoric acid. DFT calculations suggest that the basicity of TZ groups can be increased by introducing a 2,6-dioxy-phenyl-group in position 5.


2015 ◽  
Vol 3 (20) ◽  
pp. 10864-10874 ◽  
Author(s):  
Florian Mack ◽  
Karin Aniol ◽  
Corina Ellwein ◽  
Jochen Kerres ◽  
Roswitha Zeis

We present novel acid–base blend membranes with improved chemical stability and competitive fuel cell performance compared to conventional PBI membranes.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5440 ◽  
Author(s):  
Khadijeh Hooshyari ◽  
Bahman Amini Horri ◽  
Hamid Abdoli ◽  
Mohsen Fallah Vostakola ◽  
Parvaneh Kakavand ◽  
...  

This review summarizes the current status, operating principles, and recent advances in high-temperature polymer electrolyte membranes (HT-PEMs), with a particular focus on the recent developments, technical challenges, and commercial prospects of the HT-PEM fuel cells. A detailed review of the most recent research activities has been covered by this work, with a major focus on the state-of-the-art concepts describing the proton conductivity and degradation mechanisms of HT-PEMs. In addition, the fuel cell performance and the lifetime of HT-PEM fuel cells as a function of operating conditions have been discussed. In addition, the review highlights the important outcomes found in the recent literature about the HT-PEM fuel cell. The main objectives of this review paper are as follows: (1) the latest development of the HT-PEMs, primarily based on polybenzimidazole membranes and (2) the latest development of the fuel cell performance and the lifetime of the HT-PEMs.


2017 ◽  
Vol 544 ◽  
pp. 416-424 ◽  
Author(s):  
N. Nambi Krishnan ◽  
Dickson Joseph ◽  
Ngoc My Hanh Duong ◽  
Anastasiia Konovalova ◽  
Jong Hyun Jang ◽  
...  

2016 ◽  
Vol 18 (18) ◽  
pp. 13066-13073 ◽  
Author(s):  
Hiroshi Iden ◽  
Atsushi Ohma ◽  
Tomomi Tokunaga ◽  
Kouji Yokoyama ◽  
Kazuhiko Shinohara

The optimization of the catalyst layers is necessary for obtaining a better fuel cell performance and reducing fuel cell cost.


Sign in / Sign up

Export Citation Format

Share Document