Facile synthesis of high performance hard carbon anode materials for sodium ion batteries

2015 ◽  
Vol 3 (41) ◽  
pp. 20560-20566 ◽  
Author(s):  
Ning Sun ◽  
Huan Liu ◽  
Bin Xu

Hard carbon materials with high reversible sodium storage capacities up to 430.5 mA h g−1and superior cycling stability were simply synthesized by one-step pyrolysis of shaddock peel for sodium-ion batteries.

2020 ◽  
Vol 49 (44) ◽  
pp. 15712-15717
Author(s):  
Lin Sun ◽  
Jie Xie ◽  
Xixi Zhang ◽  
Lei Zhang ◽  
Jun Wu ◽  
...  

Carbon nanobubbles are regarded as one of the most promising carbon-based anode materials for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs), with significantly improved capacity and superior cycling stability.


ACS Omega ◽  
2017 ◽  
Vol 2 (4) ◽  
pp. 1687-1695 ◽  
Author(s):  
Kun Wang ◽  
Yu Jin ◽  
Shixiong Sun ◽  
Yangyang Huang ◽  
Jian Peng ◽  
...  

2019 ◽  
Vol 107 (5) ◽  
pp. 503 ◽  
Author(s):  
Jens F. Peters ◽  
Mohammad Abdelbaky ◽  
Manuel Baumann ◽  
Marcel Weil

Sodium-ion batteries are increasingly being promoted as a promising alternative to current lithium-ion batteries. The substitution of lithium by sodium offers potential advantages under environmental aspects due to its higher abundance and availability. However, sodium-ion (Na-ion) batteries cannot rely on graphite for the anodes, requiring amorphous carbon materials (hard carbons). Since no established market exists for hard carbon anode materials, these are synthesised individually for each Na-ion battery from selected precursors. The hard carbon anode has been identified as a relevant driver for environmental impacts of sodium-ion batteries in a recent work, where a significant improvement potential was found by minimising the impacts of the hard carbon synthesis process. In consequence, this work provides a detailed process model of hard carbon synthesis processes as basis for their environmental assessment. Starting from a review of recent studies about hard carbon synthesis processes from different precursors, three promising materials are evaluated in detail. For those, the given laboratory synthesis processes are scaled up to a hypothetical industrial level, obtaining detailed energy and material balances. The subsequent environmental assessment then quantifies the potential environmental impacts of the different hard carbon materials and their potential for further improving the environmental performance of future Na-ion batteries by properly selecting the hard carbon material. Especially organic waste materials (apple pomace) show a high potential as precursor for hard carbon materials, potentially reducing environmental impacts of Na-ion cells between 10 and 40% compared to carbohydrate (sugar) based hard carbons (the hard carbon material used by the current reference work). Waste tyres are also found to be a promising hard carbon precursor, but require a more complex pre-treatment prior to carbonisation, why they do not reach the same performance as the pomace based one. Finally, hard carbons obtained from synthetic resins, another promising precursor, score significantly worse. They obtain results in the same order of magnitude as the sugar based hard carbon, mainly due to the high emissions and energy intensity of the resin production processes.


2021 ◽  
Author(s):  
Mathew J Thompson ◽  
Qingbing Xia ◽  
Zhe Hu ◽  
Xiu Song Zhao

This paper presents a review of research progress for biomass-derived hard carbon materials for sodium-ion storage. It provides an in-depth analysis of hard carbon anode materials obtained from biomass with...


2020 ◽  
Vol 354 ◽  
pp. 136647 ◽  
Author(s):  
Zoia V. Bobyleva ◽  
Oleg A. Drozhzhin ◽  
Kirill A. Dosaev ◽  
Azusa Kamiyama ◽  
Sergey V. Ryazantsev ◽  
...  

2021 ◽  
Vol 1044 ◽  
pp. 25-39
Author(s):  
Hafid Khusyaeri ◽  
Dewi Pratiwi ◽  
Haris Ade Kurniawan ◽  
Anisa Raditya Nurohmah ◽  
Cornelius Satria Yudha ◽  
...  

The battery is a storage medium for electrical energy for electronic devices developed effectively and efficiently. Sodium ion battery provide large-scale energy storage systems attributed to the natural existence of the sodium element on earth. The relatively inexpensive production costs and abundant sodium resources in nature make sodium ion batteries attractive to research. Currently, sodium ion batteries electrochemical performance is still less than lithium-ion batteries. The electrochemical performance of a sodium ion battery depends on the type of electrode material used in the manufacture of the batteries.. The main problem is to find a suitable electrode material with a high specific capacity and is stable. It is a struggle to increase the performance of sodium ion batteries. This literature study studied how to prepare high-performance sodium battery anodes through salt doping. The doping method is chosen to increase conductivity and electron transfer. Besides, this method still takes into account the factors of production costs and safety. The abundant coffee waste biomass in Indonesia was chosen as a precursor to preparing a sodium ion battery hard carbon anode to overcome environmental problems and increase the economic value of coffee grounds waste. Utilization of coffee grounds waste as hard carbon is an innovative solution to the accumulation of biomass waste and supports environmentally friendly renewable energy sources in Indonesia.


2019 ◽  
Vol 7 (27) ◽  
pp. 16149-16160 ◽  
Author(s):  
Jun Kang ◽  
Dae-Yeong Kim ◽  
Seen-Ae Chae ◽  
Nagahiro Saito ◽  
Si-Young Choi ◽  
...  

Generally, carbon anode materials used in sodium-ion batteries do not exhibit good electrochemical performance because of low coulombic efficiency (CE).


Rare Metals ◽  
2020 ◽  
Vol 39 (9) ◽  
pp. 1019-1033 ◽  
Author(s):  
Peng Yu ◽  
Wei Tang ◽  
Fang-Fang Wu ◽  
Chun Zhang ◽  
Hua-Yun Luo ◽  
...  

Nanoscale ◽  
2019 ◽  
Vol 11 (46) ◽  
pp. 22196-22205 ◽  
Author(s):  
Xinlong Chen ◽  
Yuheng Zheng ◽  
Wenjian Liu ◽  
Can Zhang ◽  
Sa Li ◽  
...  

SIB with hard carbon anode is getting competitive vs. LIB, but one needs to be careful in assessing capacity and cycle life with conventional half-cell tests. New guidelines are provided for half-cell and full-cell tests and understanding the results.


Sign in / Sign up

Export Citation Format

Share Document