Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells

2015 ◽  
Vol 3 (38) ◽  
pp. 19353-19359 ◽  
Author(s):  
Wei-Yi Chen ◽  
Lin-Long Deng ◽  
Si-Min Dai ◽  
Xin Wang ◽  
Cheng-Bo Tian ◽  
...  

Low-cost solution-processed copper iodide replaces PEDOT:PSS in inverted planar heterojunction perovskite solar cells with high efficiency and enhanced stability.

Nanoscale ◽  
2016 ◽  
Vol 8 (35) ◽  
pp. 15954-15960 ◽  
Author(s):  
Weihai Sun ◽  
Senyun Ye ◽  
Haixiao Rao ◽  
Yunlong Li ◽  
Zhiwei Liu ◽  
...  

2014 ◽  
Vol 5 (6) ◽  
pp. 1401855 ◽  
Author(s):  
Dewei Zhao ◽  
Michael Sexton ◽  
Hye-Yun Park ◽  
George Baure ◽  
Juan C. Nino ◽  
...  

2021 ◽  
Author(s):  
Lie Chen ◽  
Bin Huang ◽  
Yujun Cheng ◽  
Hui Lei ◽  
Lin Hu ◽  
...  

A low-cost and efficient hole transport layer (HTL) material (TPE-CZ) with aggregation-induced emission (AIE) effect has been synthesized. Due to the AIE effect, perovskite solar cells with TPE-CZ as HTL...


2016 ◽  
Vol 145 ◽  
pp. 193-199 ◽  
Author(s):  
Ashish Dubey ◽  
Nirmal Adhikari ◽  
Swaminathan Venkatesan ◽  
Shaopeng Gu ◽  
Devendra Khatiwada ◽  
...  

Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 354
Author(s):  
Shaoxi Wang ◽  
He Guan ◽  
Yue Yin ◽  
Chunfu Zhang

With the continuous development of solar cells, the perovskite solar cells (PSCs), whose hole transport layer plays a vital part in collection of photogenerated carriers, have been studied by many researchers. Interface transport layers are important for efficiency and stability enhancement. In this paper, we demonstrated that lithium (Li) and cobalt (Co) codoped in the novel inorganic hole transport layer named NiOx, which were deposited onto ITO substrates via solution methods at room temperature, can greatly enhance performance based on inverted structures of planar heterojunction PSCs. Compared to the pristine NiOx films, doping a certain amount of Li and Co can increase optical transparency, work function, electrical conductivity and hole mobility of NiOx film. Furthermore, experimental results certified that coating CH3NH3PbIxCl3−x perovskite films on Li and Co- NiOx electrode interlayer film can improve chemical stability and absorbing ability of sunlight than the pristine NiOx. Consequently, the power conversion efficiency (PCE) of PSCs has a great improvement from 14.1% to 18.7% when codoped with 10% Li and 5% Co in NiOx. Moreover, the short-circuit current density (Jsc) was increased from 20.09 mA/cm2 to 21.7 mA/cm2 and the fill factor (FF) was enhanced from 0.70 to 0.75 for the PSCs. The experiment results demonstrated that the Li and Co codoped NiOx can be a effective dopant to improve the performance of the PSCs.


2020 ◽  
Vol 860 ◽  
pp. 9-14
Author(s):  
Ayi Bahtiar ◽  
Rizka Yazibarahmah ◽  
Annisa Aprilia ◽  
Darmawan Hidayat

Perovskite solar cells have a great potential as competitor of silicon solar cells which have been dominated the market of solar cells since last decade, due to a tremendous improvement of their power conversion efficiency (PCE). Recently, a PCE of perovskite solar cells above 23% have been obtained. Moreover, perovskite solar cells can be fabricated using simple solution methods, therefore, the whole cost production of solar cells is less than half of silicon solar cells. However, their low stability in thermal and high humidity hinder them to be produced and commercially used to replace silicon solar cells. Many efforts have been done to improve both PCE and stability, including mixed inorganic-organic cations, mixed halide anions, improvement of perovskite morphology or crystallinity and using small molecules for passivation of defect in perovskite. In this paper, we used mixed cesium-methylammonium to improve both PCE and stability of perovskite solar cells. Cesium was used due to its smaller ionic radius than methylammonium (MA) ions, therefore, the crystal structure of perovskite is not distorted. Moreover, perovskite cesium-lead-bromide (CsPbBr3) are more stable than that of MAPbBr3 and doping cesium increased light absorption in perovskite MAPbBr3. We studied the effect of mixed cesium-MA on the PCE and stability at high humidity (>70%). The percentage of cesium was varied at 0%, 5%, 10%, 15% and 20%. The perovskite solar cells have monolithic hole-transport layer free (HTL-free) structure using carbon as electrode. This structure was used due simple and low cost in processing of solar cells. Our results showed that by replacing 10% of MA ions with Cs ions, both PCE and stability at high humidity are improved.


Sign in / Sign up

Export Citation Format

Share Document