hole mobility
Recently Published Documents


TOTAL DOCUMENTS

1222
(FIVE YEARS 209)

H-INDEX

69
(FIVE YEARS 11)

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 261
Author(s):  
Te Jui Yen ◽  
Albert Chin ◽  
Weng Kent Chan ◽  
Hsin-Yi Tiffany Chen ◽  
Vladimir Gritsenko

High-performance p-type thin-film transistors (pTFTs) are crucial for realizing low-power display-on-panel and monolithic three-dimensional integrated circuits. Unfortunately, it is difficult to achieve a high hole mobility of greater than 10 cm2/V·s, even for SnO TFTs with a unique single-hole band and a small hole effective mass. In this paper, we demonstrate a high-performance GeSn pTFT with a high field-effect hole mobility (μFE), of 41.8 cm2/V·s; a sharp turn-on subthreshold slope (SS), of 311 mV/dec, for low-voltage operation; and a large on-current/off-current (ION/IOFF) value, of 8.9 × 106. This remarkably high ION/IOFF is achieved using an ultra-thin nanosheet GeSn, with a thickness of only 7 nm. Although an even higher hole mobility (103.8 cm2/V·s) was obtained with a thicker GeSn channel, the IOFF increased rapidly and the poor ION/IOFF (75) was unsuitable for transistor applications. The high mobility is due to the small hole effective mass of GeSn, which is supported by first-principles electronic structure calculations.


Research ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Dongqing Lin ◽  
Wenhua Zhang ◽  
Hang Yin ◽  
Haixia Hu ◽  
Yang Li ◽  
...  

High dielectric constants in organic semiconductors have been identified as a central challenge for the improvement in not only piezoelectric, pyroelectric, and ferroelectric effects but also photoelectric conversion efficiency in OPVs, carrier mobility in OFETs, and charge density in charge-trapping memories. Herein, we report an ultralong persistence length (lp≈41 nm) effect of spiro-fused organic nanopolymers on dielectric properties, together with excitonic and charge carrier behaviors. The state-of-the-art nanopolymers, namely, nanopolyspirogrids (NPSGs), are synthesized via the simple cross-scale Friedel-Crafts polygridization of A2B2-type nanomonomers. The high dielectric constant (k=8.43) of NPSG is firstly achieved by locking spiro-polygridization effect that results in the enhancement of dipole polarization. When doping into a polystyrene-based dielectric layer, such a high-k feature of NPSG increases the field-effect carrier mobility from 0.20 to 0.90 cm2 V-1 s-1 in pentacene OFET devices. Meanwhile, amorphous NPSG film exhibits an ultralow energy disorder (<50 meV) for an excellent zero-field hole mobility of 3.94×10−3 cm2 V−1 s−1, surpassing most of the amorphous π-conjugated polymers. Organic nanopolymers with high dielectric constants open a new way to break through the bottleneck of efficiency and multifunctionality in the blueprint of the fourth-generation semiconductors.


2022 ◽  
Vol 120 (2) ◽  
pp. 022103
Author(s):  
Chung-Chi Chen ◽  
Ting-Chun Huang ◽  
Yu-Wei Lin ◽  
Yu-Ren Lin ◽  
Ping-Hsiu Wu ◽  
...  

Author(s):  
Satomi Hosokawa ◽  
Eri Tomita ◽  
Shinji Kanehashi ◽  
Kenji Ogino

Abstract We reported that supercritical (sc) annealing of poly(3-hexylthiophene) (P3HT), and its block copolymers with poly(ethylene oxide) (PEO) and polystyrene (PSt) brought about improvements in the crystal structure and hole mobility, determined by the space charge limited current (SCLC) measurement. P3HT-b-PEO showed the largest increase in mobility. From XRD profile, it was found that the treatment with scCO2 increased the crystallite size and crystallinity. UV-vis spectra showed that the effective conjugation length in the scCO2 treated films was increased compared to the as-spun, suggesting that CO2 molecules are incorporated into domains of the second block domains and P3HT amorphous region, and assist to alter the characteristics of the crystalline region. Then, it was considered that the change in the crystalline structure and the improvement of P3HT chains packing led to the enhanced mobility. Since PEO is known to have a higher affinity for CO2, the increase of mobility was specifically intensive.


2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Ruonan Wang ◽  
Weikang Yu ◽  
Cheng Sun ◽  
Kashi Chiranjeevulu ◽  
Shuguang Deng ◽  
...  

AbstractA dopant-free hole transport layer with high mobility and a low-temperature process is desired for optoelectronic devices. Here, we study a metal–organic framework material with high hole mobility and strong hole extraction capability as an ideal hole transport layer for perovskite solar cells. By utilizing lifting-up method, the thickness controllable floating film of Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 at the gas–liquid interface is transferred onto ITO-coated glass substrate. The Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 film demonstrates high compactness and uniformity. The root-mean-square roughness of the film is 5.5 nm. The ultraviolet photoelectron spectroscopy and the steady-state photoluminescence spectra exhibit the Ni3(HITP)2 film can effectively transfer holes from perovskite film to anode. The perovskite solar cells based on Ni3(HITP)2 as a dopant-free hole transport layer achieve a champion power conversion efficiency of 10.3%. This work broadens the application of metal–organic frameworks in the field of perovskite solar cells. Graphical Abstract


2022 ◽  
Vol 2152 (1) ◽  
pp. 012008
Author(s):  
Qian Chen

Abstract Metal oxide semiconductor (MOS) is essential to compose high-performance electronic devices, however, the investigation on p-type MOS is relatively rare compared with its n-type counterpart. In this work, LaGaO3 thin films with superior p-type conductivity have been prepared via a facile solution process. Moreover, we have implemented Al2O3 and SiO2 as the dielectric of the p-channel LaGaO3 thin film transistors (TFTs) annealed at different temperatures. Particularly, the LaGaO3/Al2O3 TFTs annealed at 700 °C exhibit an ultrahigh hole mobility of 12.4 cm2V-1s-1, Under the same conditions, LaGaO3/Al2O3 thin film transistor is two orders of magnitude higher than LaGaO3/SiO2 thin film transistor. The advanced p-type characteristics of the LaGaO3 thin film, along with its facile low-cost fabrication process can shed new light on future design of high-performance complementary MOS circuit with other optimized facile-integrated dielectrics.


Author(s):  
Junke Li ◽  
Mei Li ◽  
Hongying Li ◽  
Zhiliang Jin

As a new allotrope of carbon, graphdiyne (GDY) also shows great potential in photocatalysis based on the characteristics of narrow bandgap and high electron-hole mobility. This work synthesized the GDY-CuBr...


Nanomaterials ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 154
Author(s):  
Ming-Ru Wen ◽  
Sheng-Hsiung Yang ◽  
Wei-Sheng Chen

Copper thiocyanate (CuSCN) has been gradually utilized as the hole injection layer (HIL) within optoelectronic devices, owing to its high transparency in the visible range, moderate hole mobility, and desirable environmental stability. In this research, we demonstrate quantum dot light-emitting diodes (QLEDs) with high brightness and current efficiency by doping 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) in CuSCN as the HIL. The experimental results indicated a smoother surface of CuSCN upon F4TCNQ doping. The augmentation in hole mobility of CuSCN and carrier injection to reach balanced charge transport in QLEDs were confirmed. A maximum brightness of 169,230 cd m−2 and a current efficiency of 35.1 cd A−1 from the optimized device were received by adding 0.02 wt% of F4TCNQ in CuSCN, revealing promising use in light-emitting applications.


Author(s):  
Ryo Oishi ◽  
Koji ASAKA ◽  
Bolotov Leonid ◽  
Noriyuki Uchida ◽  
Masashi Kurosawa ◽  
...  

Abstract A simple method to form ultra-thin (< 20 nm) semiconductor layers with a higher mobility on a 3D-structured insulating surface is required for next-generation nanoelectronics. We have investigated the solid-phase crystallization of amorphous Ge layers with thicknesses of 10−80 nm on insulators of SiO2 and Si3N4. We found that decreasing the Ge thickness reduces the grain size and increases the grain boundary barrier height, causing the carrier mobility degradation. We examined two methods, known effective to enhance the grain size in the thicker Ge (>100 nm). As a result, a relatively high Hall hole mobility (59 cm2/Vs) has been achieved with a 20-nm-thick polycrystalline Ge layer on Si3N4, which is the highest value among the previously reported works.


Sign in / Sign up

Export Citation Format

Share Document