scholarly journals Correction: Three-dimensional protein assemblies directed by orthogonal non-covalent interactions

2016 ◽  
Vol 52 (71) ◽  
pp. 10803-10803
Author(s):  
Guang Yang ◽  
Zdravko Kochovski ◽  
Zhongwei Ji ◽  
Yan Lu ◽  
Guosong Chen ◽  
...  

Correction for ‘Three-dimensional protein assemblies directed by orthogonal non-covalent interactions’ by Guang Yang et al., Chem. Commun., 2016, 52, 9687–9690.

2016 ◽  
Vol 52 (62) ◽  
pp. 9687-9690 ◽  
Author(s):  
Guang Yang ◽  
Zdravko Kochovski ◽  
Zhongwei Ji ◽  
Yan Lu ◽  
Guosong Chen ◽  
...  

In this report, an orthogonal non-covalent interaction strategy based on specific recognition between sugar and protein, and host–guest interaction, was employed to construct artificial three dimensional (3D) protein assemblies in the laboratory.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 328
Author(s):  
Raquel Álvarez-Vidaurre ◽  
Alfonso Castiñeiras ◽  
Antonio Frontera ◽  
Isabel García-Santos ◽  
Diego M. Gil ◽  
...  

This work deals with the preparation of pyridine-3-carbohydrazide (isoniazid, inh) cocrystals with two α-hydroxycarboxylic acids. The interaction of glycolic acid (H2ga) or d,l-mandelic acid (H2ma) resulted in the formation of cocrystals or salts of composition (inh)·(H2ga) (1) and [Hinh]+[Hma]–·(H2ma) (2) when reacted with isoniazid. An N′-(propan-2-ylidene)isonicotinic hydrazide hemihydrate, (pinh)·1/2(H2O) (3), was also prepared by condensation of isoniazid with acetone in the presence of glycolic acid. These prepared compounds were well characterized by elemental analysis, and spectroscopic methods, and their three-dimensional molecular structure was determined by single crystal X-ray crystallography. Hydrogen bonds involving the carboxylic acid occur consistently with the pyridine ring N atom of the isoniazid and its derivatives. The remaining hydrogen-bonding sites on the isoniazid backbone vary based on the steric influences of the derivative group. These are contrasted in each of the molecular systems. Finally, Hirshfeld surface analysis and Density-functional theory (DFT) calculations (including NCIplot and QTAIM analyses) have been performed to further characterize and rationalize the non-covalent interactions.


Author(s):  
Zhanna V. Matsulevich ◽  
Julia M. Lukiyanova ◽  
Vladimir I. Naumov ◽  
Galina N. Borisova ◽  
Vladimir K. Osmanov ◽  
...  

1H-Pyridine-2-selenenyl dibromide, C5H5NSeBr2, 1, is a product of the bromination of bis(pyridin-2-yl) diselenide in methylene chloride recrystallization from methanol. Compound 1 is essentially zwitterionic: the negative charge resides on the SeBr2 moiety and the positive charge is delocalized over the pyridinium fragment. The C—Se distance of 1.927 (3) Å is typical of a single bond. The virtually linear Br—Se—Br moiety of 178.428 (15)° has symmetrical geometry, with Se—Br bonds of 2.5761 (4) and 2.5920 (4) Å, and is twisted by 63.79 (8)° relative to the pyridinium plane. The Se atom forms an intermolecular Se...Br contact of 3.4326 (4) Å, adopting a distorted square-planar coordination. In the crystal, molecules of 1 are linked by intermolecular N—H...Br and C—H...Br hydrogen bonds, as well as by non-covalent Se...Br interactions, into a three-dimensional framework. (3aSR,(9aRS)-2,3,3a,9a-Tetrahydro-1H-cyclopenta[4,5][1,3]selenazolo[3,2-a]pyridinium-9 bromide, C10H12NSe+·Br−, 2, is a product of the cycloaddition reaction of 1 with cyclopentene. Compound 2 is a salt containing a selenazolopyridinium cation and a bromide anion. Both five-membered rings of the cation adopt envelope conformations. The dihedral angle between the basal planes of these rings is 62.45 (11)°. The Se atom of the cation forms two additional non-covalent interactions with the bromide anions at distances of 3.2715 (4) and 3.5683 (3) Å, attaining a distorted square-planar coordination. In the crystal, the cations and anions of 2 form centrosymmetric dimers by non-covalent Se...Br interactions. The dimers are linked by weak C—H...Br hydrogen bonds into double layers parallel to (001).


Crystals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 91
Author(s):  
Usman ◽  
Khan ◽  
Jaafar ◽  
Alsalme ◽  
Tabassum

An organic supramolecular salt hydrate (imidazolium:N-phthalolylglycinate:H2O; IM+-NPG−-HYD) has been examined for its charge-transfer (CT) characteristics. Accordingly, IM+–NPG−–HYD has been characterized thoroughly using various spectroscopic techniques. Combined experimental and quantum chemical studies, along with wave function analysis, were performed to study the non-covalent interactions and their role in CT in the supramolecular salt hydrate. Notably, IM+–NPG−–HYD crystalizes in two configurations (A and B), both of which are held together via non-covalent interactions to result in a three-dimensional CT supramolecular assembly. The through-space CT occurs from NPG– (donor) to IM+ (acceptor), and this was mediated via non-covalent forces. We demonstrated the role of π–π stacking interactions (mixed-stacking donor-acceptor interactions) in the presence of charge-assisted hydrogen bonds in the regulation of CT properties in the self-assembly of the IM+–NPG−–HYD salt hydrate.


IUCrData ◽  
2021 ◽  
Vol 6 (6) ◽  
Author(s):  
J. Alberto Polito-Lucas ◽  
José A. Núñez-Ávila ◽  
Sylvain Bernès ◽  
Aarón Pérez-Benítez

The title compound, (NH4)4(C4H12N5)2[V10O28]·6H2O, crystallizes with the decavanadate anion placed on an inversion centre in space group P\overline{1}. This anion is surrounded by a first shell of ammonium cations and water molecules, forming efficient N—H...O and O—H...O hydrogen bonds. A second shell includes metforminium monocations with a twisted geometry, also forming numerous intermolecular hydrogen bonds. The complex three-dimensional network of non-covalent interactions affords a crystal structure in which the cations and anions are densely packed.


Author(s):  
Asiloé J. Mora ◽  
Lusbely M. Belandria ◽  
Gerzon E. Delgado ◽  
Luis E. Seijas ◽  
Angel Lunar ◽  
...  

Single-crystal X-ray diffraction and quantum mechanical theories were used to examine in detail the subtle nature of non-covalent interactions in the [2:1:1] multicomponent crystal of 1,1-aminocyclopentanecarboxylic acid:oxalic acid:water. The crystal, which is a hydrate salt of the amino acid with the hydrogen-oxalate ion, also contains the zwitterion of the amino acid in equal proportions. It was found that a dimeric cation [Acc5(Z)...Acc5(C)]+bonded by an O—H...O hydrogen bond exists due to a charge transfer between acid and carboxylate groups. The three-dimensional crystal is built by blocks stacked along the [101] direction by dispersion interactions, with each block growing along two directions: a hydrogen oxalate HOX−...HOX−catameric supramolecular structure along the [010] direction; and double ...HOX−—W—[Acc5(Z)... Acc5(C)]+... chains related by inversion centers along the [1 0 {\bar 1}] direction. A PBE-DFT optimization, under periodic boundary conditions, was carried out. The fully optimized structure obtained was used to extract the coordinates to calculate the stabilization energy between the dimers under the crystal field, employing the M062X/aug-cc-pVTZ level of theory. The non-covalent index isosurfaces employed here allow the visualization of where the hydrogen bond and dispersion interactions contribute within the crystal. The crystal atomic arrangements are analyzed by employing the Atoms in Molecules and electron localization function theories. Within this context, the presence of density bond critical points is employed as a criterion for proving the existence of the hydrogen bond and it was found that these results agree with those rendered by the crystallographic geometrical analysis, with only three exceptions, for which bond critical points were not found.


Author(s):  
Cristobal Perez ◽  
Melanie Schnell ◽  
Peter Schreiner ◽  
Norbert Mitzel ◽  
Yury Vishnevskiy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document