Location of deuterium sites at operating temperature from neutron diffraction of BaIn0.6Ti0.2Yb0.2O2.6−n(OH)2n, an electrolyte for proton-solid oxide fuel cells

2016 ◽  
Vol 18 (23) ◽  
pp. 15751-15759 ◽  
Author(s):  
Angélique Jarry ◽  
Olivier Joubert ◽  
Emmanuelle Suard ◽  
Jean Marc Zanotti ◽  
Eric Quarez

A fundamental understanding of the doping effect on the hydration mechanism and related proton diffusion pathways are keys to the progress of Proton-Solid Oxide Fuel Cell (H+-SOFC) technologies.

2017 ◽  
Vol 5 (35) ◽  
pp. 18414-18419 ◽  
Author(s):  
Jong Dae Baek ◽  
Kang-Yu Liu ◽  
Pei-Chen Su

State-of-the-art micro-solid oxide fuel cells (micro-SOFCs) use ion-conducting ceramic electrolytes with thicknesses in the tens to hundreds of nanometers scale, which enabled a drastic decrease in operating temperature without a decrease in cell performance.


RSC Advances ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 7-14
Author(s):  
Cheng Cheng Wang ◽  
Mortaza Gholizadeh ◽  
Bingxue Hou ◽  
Xincan Fan

Strontium segregation in a La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) electrode reacts with Cr and S in a solid oxide fuel cell (SOFC), which can cause cell performance deterioration.


2016 ◽  
Vol 835 ◽  
pp. 199-236 ◽  
Author(s):  
Pradyot Datta

Depletion of fossil fuel at an alarming rate is a major concern of humankind. Consequently, researchers all over the world are putting a concerted effort for finding alternative and renewable energy. Solid oxide fuel cell (SOFC) is one such system. SOFCs are electrochemical devices that have several advantages over conventional power generation systems like high efficiency of power generation, low emission of green house gases and the fuel flexibility. The major research focus of recent times is to reduce the operating temperature of SOFC in the range of 500 to 700 °C so as to render it commercially viable. This reduction in temperature is largely dependent on finding an electrolyte material with adequate oxygen ion conductivity at the intended operating temperature. One much material is Gadolinia doped Ceria (CGO) that shows very good oxygen ion conductivity at the intended operation temperature. The aim of this overview is to highlight the contribution that materials chemistry has made to the development of CGO as an electrolyte.


2017 ◽  
Vol 10 (4) ◽  
pp. 964-971 ◽  
Author(s):  
Yu Chen ◽  
Yan Chen ◽  
Dong Ding ◽  
Yong Ding ◽  
YongMan Choi ◽  
...  

A hybrid catalyst coating dramatically enhances the electrocatalytic activity and durability of a solid oxide fuel cell cathode.


2020 ◽  
Vol 8 (48) ◽  
pp. 25978-25985
Author(s):  
Jun Li ◽  
Jie Hou ◽  
Xiuan Xi ◽  
Ying Lu ◽  
Mingming Li ◽  
...  

Symmetrical solid oxide fuel cell reactor with BaZr0.1Ce0.7Y0.1Yb0.1O3−δ as electrolyte and La0.6Sr0.4Fe0.8Nb0.1Cu0.1O3−δ as electrodes is applied to cogenerate ethylene and electricity.


2018 ◽  
Vol 43 (9) ◽  
pp. 4492-4504 ◽  
Author(s):  
Yu-Cai Zhang ◽  
Wenchun Jiang ◽  
Shan-Tung Tu ◽  
Chuan-Long Wang ◽  
Cheng Chen

2014 ◽  
Vol 2 (42) ◽  
pp. 18106-18114 ◽  
Author(s):  
Elena Stefan ◽  
Paul A. Connor ◽  
Abul K. Azad ◽  
John T. S. Irvine

The paper investigates the structure and properties of novel electrode scaffold materials for solid oxide fuel cell (SOFC), such as MgMxCr2−xO4, (M = Li, Mg, Ti, Fe, Cu, Ga).


Sign in / Sign up

Export Citation Format

Share Document