temperature interval
Recently Published Documents


TOTAL DOCUMENTS

346
(FIVE YEARS 53)

H-INDEX

28
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Mikhail A. Semkin ◽  
Natalia V. Urusova ◽  
Anatoly I. Beskrovnyi ◽  
Aleksey Volegov ◽  
Alexander P. Nosov ◽  
...  

Abstract The LiNiPO4, LiNi0.9Mn0.1PO4, and LiNi0.9Co0.1PO4 single crystals are studied with heat capacity and neutron diffraction measurements over the temperature interval (10–30) K. Two peaks are observed on the temperature dependence of heat capacity for LiNiPO4, and LiNi0.9Co0.1PO4 samples. One peak indicates the first order phase transition from an antiferromagnetic commensurate (C) structure to an incommensurate (IC) one upon heating. According to neutron diffraction, in LiNiPO4 the IC ordering is described by the propagation vector k = 2π/b(0, 0.080, 0) at the Néel temperature T N = 20.8 K, and k = 2π/b(0, 0.098, 0) at T N = 20.2(1) K for LiNi0.9Co0.1PO4. A further increase in temperature leads to the second order phase transition to a paramagnetic state at critical temperature T IC = 21.7 K and 21.1 K for LiNiPO4 and LiNi0.9Co0.1PO4, respectively. The C and IC phases coexist over the temperature interval (20.6–20.8) K and (20.2–21.2) K in LiNiPO4 and LiNi0.9Co0.1PO4, respectively. In the LiNi0.9Mn0.1PO4 the magnetic phase transition occurs at T N = 22.7 K, but a magnetic scattering is observed up to 24.6 K.


2022 ◽  
Author(s):  
E.V. Artamonov

Abstract. The article shows the developed installation for determination of temperature of maximum operability of replaceable cutting hard-alloy plates on the basis of study of change of electromagnetic properties. The method of research is given. Tests of images were carried out to time of heating of the replaceable cutting plates from solid B35 alloy. The heating temperature interval was selected according to the temperature mode of the process of cutting difficult materials. Heating was carried out to 1000˚ C. The results of the study were obtained to determine the temperature of maximum operability of replaceable cutting hard alloy plates based on the study of the change in electromagnetic properties for alloy В35 amounted to 460-730 ° С.


Surface ◽  
2021 ◽  
Vol 13(28) ◽  
pp. 75-83
Author(s):  
D. B. Nasiedkin ◽  
◽  
M. O. Nazarchuk ◽  
A. G. Grebenyuk ◽  
L. F. Sharanda ◽  
...  

Метою даної роботи є оцінка енергетичної сприятливості утворення різних молібдатних груп (≡Si‑O‑)2Mo(=O)2 та =Si(‑O‑)2Mo(=O)2 під час термічно ініційованого диспергування MoO3 на гідроксильованій поверхні SiO2. Для цього було здійснено квантовохімічне моделювання реакції O12Si10(OH)16 + MoO3 = O12Si10(OH)14O2MoO2 + H2O в температурному інтервалі 300–1100 K із використанням обмеженого методу Хартрі-Фока (наближення ЛКАО) з валентним базисом SBKJC (Stevens-Basch-Krauss-Jasien-Cundari). Кластер O12Si10(OH)16, який являє собою структурний фрагмент кристала β‑кристобаліту, був використаний як модель високогідроксильованої поверхні кремнезему. Ми розглянули дві структури молібдатних груп (≡Si‑O‑)2Mo(=O)2, прикріплених до кремнеземного кластера O12Si10(OH)16 через силанольні групи. Молібдатні групи (Etot ‑584.60147 Hartree), прикріплені до кремнеземного кластера через віддалені силанольні групи, виявляються більш енергетично вигідними, ніж молібдатні групи (Etot ‑584.56565 Hartree), прикріплені до кремнеземного кластера через сусідні силанольні групи. Енергія молібдатних груп =Si(‑O‑)2Mo(=O)2 (Etot ‑584.48399 Hartree), прикріплених до кремнеземного кластера O12Si10(OH)16 через силандіольні групи, менш енергетично вигідні в порівнянні з подібними групами, прикріпленими через силанольні групи, через більше напруження кута між зв’язками. Знайдено, що реакція O12Si10(OH)16 + MoO3 = O12Si10(OH)14O2MoO2 + H2O в температурному інтервалі 300–1100 K, змодельована шляхом квантовохімічних розрахунків, свідчить, що процес диспергування MoO3 на гідроксильованій поверхні SiO2 є енергетично вигідним. Експ The aim of the present work is to evaluate the energetic favourability of the formation of different molybdate species (≡Si‑O‑)2Mo(=O)2 and =Si(‑O‑)2Mo(=O)2 during the thermally induced MoO3 dispergation on hydroxylated SiO2 surface. In order to do this a quantum chemical modelling of the reaction O12Si10(OH)16 + MoO3 = O12Si10(OH)14O2MoO2 + H2O within the temperature interval of 300–1100 K was undertaken using the Restricted Hartree-Fock method (the LCAO approximation) with the SBKJC (Stevens-Basch-Krauss-Jasien-Cundari) valence basis set. The cluster O12Si10(OH)16 which represents a structural fragment of a β‑cristobalite crystal was used in this work as a model of highly hydroxylated silica surface. We considered two structures of molybdate (≡Si‑O‑)2Mo(=O)2 species attached to O12Si10(OH)16 silica cluster via silanol groups. Molybdate species (Etot ‑584.60147 Hartree) attached to silica cluster via distant silanols appeared more energetically favourable than molybdate species (Etot ‑584.56565 Hartree) attached to silica cluster via nearby silanols. The energy of molybdate =Si(‑O‑)2Mo(=O)2 species (Etot ‑584.48399 Hartree) attached to O12Si10(OH)16 silica cluster via silanediol group is less favourable energetically in comparison with those attached via silanol groups because of higher bond angle straining. The reaction O12Si10(OH)16 + MoO3 = O12Si10(OH)14O2MoO2 + H2O in the temperature interval of 300–1100 K which simulates by quantum chemical calculations the dispergation of MoO3 on hydroxylated SiO2 surface was found to be energetically favourable. The experimentally optimised temperature of ca. 800 K required for dispergation of MoO3 on hydroxylated SiO2 surface is determined by MoO3 evaporation and transportation via the gas phase. ериментальна оптимальна температура (близько 800 K), потрібна для диспергування MoO3 на гідроксильованій поверхні SiO2, визначається випаровуванням та перенесенням MoO3 в газовій фазі.


Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 30
Author(s):  
Tao Sun ◽  
Yuanfeng Zheng ◽  
Ying Yuan ◽  
Haifu Wang

Drop-weight tests were conducted to investigate the impact-initiation sensitivity of high-temperature PTFE-Al-W reactive materials. The test results show that the impact-initiation sensitivity of the materials more than doubles with increasing the sample temperature from 25 to 350 °C. Combined with the impact-induced initiation process recorded by high-speed video and the difference between reacted and unreacted residues, the crack-induced initiation mechanism was revealed. The rapid propagation of crack provides a high-temperature and aerobic environment where Al reacts violently to PTFE, which induces the initiation. Moreover, the influence of sample temperature on the sensitivity was discussed and analyzed. The analysis results indicate that the sensitivity shows a temperature interval effect, and 127 and 327 °C are the interval boundaries where the sensitivity changes significantly. The sensitivity may leaps at 127 °C and increases more rapidly in the temperature interval from 127 to 327 °C, but hardly changes after the temperature reaches 327 °C.


2021 ◽  
Vol 68 (12) ◽  
pp. 953-957
Author(s):  
A. Sh. Agazhanov ◽  
D. A. Samoshkin ◽  
Yu. M. Kozlovskii ◽  
S. V. Stankus

2021 ◽  
Vol 66 (11) ◽  
pp. 983
Author(s):  
S.S. Ragimov ◽  
M.A. Musayev ◽  
N.N. Hashimova

The transport properties of (AgSbTe2)0.9(PbTe)0.1, namely, the electrical conductivity and the Seebeck (S) and Hall (RH) coefficients, are studied in the temperature interval 80–560 K. An endothermic peak at 410 K is found by the differential scanning calorimetry (DSC). Sharp changes in the temperature dependences of the electrical conductivity and thermoelectric power in the region near 410 K are observed. The temperature dependence of Hall coefficient passes through maximum at ∼200 K and has negative sign. It is shown that, these peculiarities are due to the presence of the Ag2Te phase. The thermoelectric Z-factor has the maximum value of 2.7 × 10−3 K−1 at 400 K.


2021 ◽  
Vol 66 (11) ◽  
pp. 988
Author(s):  
T.V. Panchenko ◽  
L.M. Karpova ◽  
Yu.N. Potapovich

The polarization processes in Bi12SiO20 crystals doped with Fe (Bi12SiO20 : Fe) in the temperature interval 300–800 K are studied by the thermoactivation spectroscopy methods. The temperature dependences of the thermostimulated depolarization (TSD) currents and the dependences of the intensities of TSD current peaks on the polarization conditions are obtained. The mechanisms of space charge and quasidipole polarizations are revealed. The temperature dependences of the optical absorption of Bi12SiO20 : Fe crystals are also investigated.


2021 ◽  
Vol 57 (6) ◽  
pp. 913-926
Author(s):  
S. K. Gribov ◽  
V. P. Shcherbakov ◽  
V. A. Tsel’movich ◽  
N. A. Aphinogenova

Abstract—The experiments have been carried out on the acquisition of thermochemical remanent magnetization (TCRM) in basalt samples containing titanomagnetite (TM) with the Curie temperature Тс ~200°C by their rapid heating to maximum temperatures Т* from 450 to 530°C followed by slow cooling in the laboratory magnetic field Blab. At different stages of the preliminary thermal treatment of the initial samples, a set of magnetomineralogical studies including electron microscopy, X-ray diffraction and thermomagnetic analyzes, and measurements of magnetic hysteresis parameters were performed. It is shown that as early as the very beginning of the cooling process, all samples demonstrate explosive growth of TCRM corresponding to the stage of rapid single-phase oxidation of the initial titanomagnetite fraction of basalt, and that TCRM is acquired by the increase of Тс and volume of single-phase oxidized parts of TM grains as well as by the growth of the volume of Ti-depleted (relative to the initial TM) cells of microstructure of the subsequent oxidative exsolution. The Arai–Nagata diagrams for the samples carrying TCRM have a form of a broken line consisting of two linear segments. The low-temperature interval T < Т* corresponds to a mixture of thermochemical and thermoremanent (TRM) magnetizations and gives a slightly overestimated Blab because of the effect of a low cooling rate during the acquisition of TCRM and TRM. The high-temperature interval corresponds to pure TCRM and the Blab strength determined from this interval is underestimated by 20–27%. It is recommended to reject samples whose Araii–Nagata diagram has two or more linear segments against the background single-component NRM.


2021 ◽  
Vol 15 (3) ◽  
Author(s):  
O. Dromenko ◽  
V. Potapov ◽  
M. Yancheva ◽  
V. Оnishchenko ◽  
V. Bolshakova ◽  
...  

The paper presents a study of the thermophysical characteristics of meat systems based on minced beef and pork with different morphological composition in the freezing–thawing process, and those of model systems based on minced beef with addition of adipose tissue (raw fat). The method used to detect and compare the thermodynamic changes consisted in determining the effective specific heat capacity by freeze-thaw thermograms and was based on a set of informational parameters related to it (cryoscopic temperature, cryoscopic interval of temperatures, specific heat of phase transition in the cryoscopic temperature interval, change of enthalpy in the interval of temperatures of the sample tested, proportion of moisture that changes its physical state in the cryoscopic temperature interval). It has been shown that the morphological structure of meat (the ratio of muscle, connective, and adipose tissues) significantly affects the thermophysical parameters of meat systems during freezing and defrosting. It has been found that under the conditions of a freeze–thaw cycle, an increase in the content of connective tissue leads to a higher proportion of moisture that changes its physical state in the cryoscopic temperature interval, while an increase in the adipose tissue content in a meat system reduces the moisture that changes its physical state in the cryoscopic temperature interval. When adipose tissue was introduced into meat systems, the freezing process resulted in a higher rate of formation of ice crystals and a lower rate of moisture migration from cells to the intercellular space, and crystal formation became a controlled process. When manufacturing semi-finished frozen meat products, regulating the ratio of muscle and adipose tissues makes it possible to influence the stability of the properties of meat systems in the technological cycle “freezing – storage – thawing” and to create products with the required functional, technological, and thermophysical parameters. This research can be a basis for developing the recipe compositions and technological parameters of manufacturing semi-finished frozen meat products and finished products based on them


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alisa Gordeeva ◽  
Istvan Z. Jenei ◽  
Kristina Spektor ◽  
Olga Yu. Vekilova ◽  
Ulrich Häussermann

Abstract LiAlSiO3(OH)2 is a dense hydrous aluminosilicate which is formed from LiAlSiO4 glass in hydrothermal environments at pressures around 5 GPa. The OH groups are part of the octahedral Al and Li coordination. We studied the dehydration behavior of LiAlSiO3(OH)2 by a combination of TEM and multi-temperature PXRD experiments. Dehydration takes place in the temperature interval 350–400 °C. Above 700 °C LiAlSiO3(OH)2 is converted via a transient and possibly still slightly hydrous phase into γ-eucryptite which is a metastable and rarely observed polymorph of LiAlSiO4. Its monoclinic structure is built from corner-sharing LiO4, AlO4 and SiO4 tetrahedra. The ordered framework of AlO4 and SiO4 tetrahedra is topologically equivalent to that of cristobalite.


Sign in / Sign up

Export Citation Format

Share Document