Na+ and Zr4+ co-doped Li4Ti5O12 as anode materials with superior electrochemical performance for lithium ion batteries

RSC Advances ◽  
2016 ◽  
Vol 6 (93) ◽  
pp. 90455-90461 ◽  
Author(s):  
Peng Lu ◽  
Xiaobing Huang ◽  
Yurong Ren ◽  
Jianning Ding ◽  
Haiyan Wang ◽  
...  

Na+ and Zr4+ co-doped lithium titanates were successfully synthesized via a solid-state reaction in air. Particularly, Li3.97Na0.03Ti4.97Zr0.03O12 exhibits the best rate capability. Even at 20C, it delivers a discharge capacity of 140 mA h g−1.

Nanoscale ◽  
2015 ◽  
Vol 7 (37) ◽  
pp. 15075-15079 ◽  
Author(s):  
Jianbin Zhou ◽  
Ning Lin ◽  
Ying Han ◽  
Jie Zhou ◽  
Yongchun Zhu ◽  
...  

Cu3Si@Si core–shell nanoparticles are synthesized by a solid-state reaction and exhibit high electrochemical performance.


RSC Advances ◽  
2015 ◽  
Vol 5 (52) ◽  
pp. 41999-42008 ◽  
Author(s):  
Mengmeng Lao ◽  
Peng Li ◽  
Xiaoting Lin ◽  
Lianyi Shao ◽  
Miao Shui ◽  
...  

In this paper, a series of Na-doped Li2Na2Ti6O14 samples are synthesized by a simple solid-state reaction method through Li-site substitution with Na.


RSC Advances ◽  
2016 ◽  
Vol 6 (19) ◽  
pp. 15492-15500 ◽  
Author(s):  
Zhanyu Li ◽  
Jianling Li ◽  
Yuguang Zhao ◽  
Kai Yang ◽  
Fei Gao ◽  
...  

Sm doping has a great impact on discharge capacity, rate capability and cycling performance of LTO anode materials for lithium-ion batteries.


2019 ◽  
Vol 6 (11) ◽  
pp. 3288-3294 ◽  
Author(s):  
Ziye Shen ◽  
Zhongxue Zhang ◽  
Song Wang ◽  
Zenan Liu ◽  
Lijuan Wang ◽  
...  

LM6ZTW3O co-doped with Mg2+–W6+ with excellent low temperature electrochemical performance has been synthesized using a simple solid-state method.


2013 ◽  
Vol 06 (06) ◽  
pp. 1350054 ◽  
Author(s):  
CHAO WU ◽  
QUANCHAO ZHUANG ◽  
YONGXIN WU ◽  
LEILEI TIAN ◽  
XINXI ZHANG ◽  
...  

Fe 3 O 4/carbon nanotubes (CNTs) nanocomposites are successfully prepared by a facile hydrothermal method, without any reducing agents. SEM shows that the CNTs are dispersed well in the Fe 3 O 4 nanoparticles of 50 to 100 nm in size. The electrochemical properties of the prepared nanocomposites as anode materials are further evaluated by galvanostatic charge/discharge cycling and cyclic voltammetry (CV). Results show that the nanocomposites display an initial discharge capacity of 1421 mAh⋅g-1 and maintain 1100 mAh⋅g-1 up to 40 cycles in the voltage of 0.005–3.0 V at 100 mAh⋅g-1. When the current density is to 0.5, 1, 2, 5 and 1 C, the nanocomposites still exhibit discharge capacity of 1615.8, 817.0, 585.0, 391.0 and (585.0 ± 45.0) mAh⋅g-1, respectively, which are potential for anode materials in lithium-ion batteries.


2021 ◽  
Author(s):  
Dongjian Li ◽  
Hongtao Guo ◽  
Shaohua Jiang ◽  
Guilin Zeng ◽  
Wei Zhou ◽  
...  

Mg–Zr-Ti co-modified NCM with excellent electrochemical performance is obtained by a solid-state method.


2014 ◽  
Vol 2 (24) ◽  
pp. 9322-9330 ◽  
Author(s):  
Shifeng Yang ◽  
Jian Chen ◽  
Yingjia Liu ◽  
Baolian Yi

Using bimetal–organic coordination-polymers as precursors and subsequent solid-state reaction with lithium salts, Li2CO3-coated LiNi0.5Mn1.5O4 nanoplates with superior rate capability and cycling stability have been synthesized, and provide a promising cathode candidate for lithium-ion batteries.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2363
Author(s):  
Renqing Guo ◽  
Xiaohua Huang ◽  
Yan Lin ◽  
Yiqi Cao

To enhance the electrochemical performance of nickel oxide as anode materials for lithium ion batteries, NiO/carbon aerogel microspheres with a plum-pudding structure were designed and prepared by a sol-gel technique followed by two calcination processes under different atmospheres. Carbon aerogel microspheres (pudding) can act as a buffering and conductive matrix to enhance the structural stability and conductivity of the embedded NiO particles (plums), which are quite advantageous to the cycling performance and rate capability. Consequently, NiO/carbon aerogel microspheres with a plum-pudding structure deliver an initial charge capacity of 808 mAh g−1 and a reversible capacity retention of 85% after 100 cycles. The enhancement in electrochemical performance relative to pure NiO microspheres suggests that the design of a plum-pudding structure is quite effective.


2017 ◽  
Vol 41 (20) ◽  
pp. 12190-12197 ◽  
Author(s):  
Ali Reza Madram ◽  
Mahbubeh Faraji

In this study, Na and K co-doped LiFePO4/C samples with controlled Na and K sites, i.e., the Li1−x−yNaxKyFePO4/C and LiFe1−x−yNaxKyPO4/C (x = 0.02, y = 0.01) have been first synthesized via a common solid-state synthesis and the effects of the alien metal occupied site on the structure, morphology and electrochemical performance of LiFePO4/C are studied.


2013 ◽  
Vol 724-725 ◽  
pp. 1067-1070
Author(s):  
Ning Yu Gu ◽  
Yang Li ◽  
Chao Li

To enhance the electrochemical performance of LiFePO4/C, Na and V have been co-doped in cathode material of the lithium ion batteries. A series of Na and V doped samples Li0.97Na0.03Fe(1-x)VxPO4/C (x=0, 0.01, 0.03, 0.05) cathode materials are synthesized by solid state method. Results show that the Li0.97Na0.03Fe0.97V0.03PO4/C exhibited the best electrochemical performances.


Sign in / Sign up

Export Citation Format

Share Document