Label-free biosensor based on dsDNA-templated copper nanoparticles for highly sensitive and selective detection of NAD+

RSC Advances ◽  
2016 ◽  
Vol 6 (94) ◽  
pp. 91077-91082 ◽  
Author(s):  
Jia Ge ◽  
Zhen-Zhen Dong ◽  
Lin Zhang ◽  
Qi-Yong Cai ◽  
Dong-Mei Bai ◽  
...  

A novel label-free biosensor for high sensing of NAD+ based on dsDNA-templated CuNPs and DNA ligation reaction.

Chemosensors ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 52
Author(s):  
Qian Ma ◽  
Zhiqiang Gao ◽  
Hiranya Dayal ◽  
Sam Fong Yau Li

In this work, a simple and label-free fluorescence “off” to “on” platform was designed for the sensitive and selective detection of microRNA (miRNA) in cancer cells. This method utilized a padlock DNA-based rolling circle amplification (P-RCA) to synthesize fluorescent poly(thymine) (PolyT) which acted as a template for the synthesis of copper nanoparticles (CuNPs) within 10 minutes under mild conditions. While the repeated PolyT sequence was used as the template for CuNP synthesis, other non-PolyT parts (single strand-DNAs without the capacity to act as the template for CuNP formation) served as “smart glues” or rigid linkers to build complex nanostructures. Under the excitation wavelength of 340 nm, the synthesized CuNPs emitted strong red fluorescence effectively at 620 nm. To demonstrate the use of this method as a universal biosensor platform, lethal-7a (let-7a) miRNA was chosen as the standard target. This sensor could achieve highly sensitive and selective detection of miRNA in the presence of other homologous analogues for the combination of P-RCA with the fluorescent copper nanoparticle. Overall, this novel label-free method holds great potential in the sensitive detection of miRNA with high specificity in real samples.


RSC Advances ◽  
2014 ◽  
Vol 4 (51) ◽  
pp. 27091-27097 ◽  
Author(s):  
Qingwang Xue ◽  
Yanqin Lv ◽  
Yuanfu Zhang ◽  
Shuling Xu ◽  
Qiaoli Yue ◽  
...  

A novel label-free amplified fluorescent sensing scheme based on target-responsive dumbbell probe-mediated rolling circle amplification (D-RCA) has been developed for sensitive and selective detection of mercuric ions.


2018 ◽  
Vol 6 (48) ◽  
pp. 8214-8220 ◽  
Author(s):  
Quan Li ◽  
Kaite Peng ◽  
Yanzhen Lu ◽  
Aoxin Li ◽  
Fenfang Che ◽  
...  

Label-free fluorescent ionic liquid-functionalized silicon nanoparticles with tunable amphiphilicity for highly sensitive and selective detection of Hg2+ were synthesized.


The Analyst ◽  
2016 ◽  
Vol 141 (5) ◽  
pp. 1822-1829 ◽  
Author(s):  
Jie Hu ◽  
Qianfen Zhuang ◽  
Yong Wang ◽  
Yongnian Ni

The synergistically enhanced catalytic effect of a Fe2+/molybdenum disulfide (MoS2) nanosheet was exploited to construct a nanozyme biosensor for Fe2+.


2012 ◽  
Vol 4 (5) ◽  
pp. 1310 ◽  
Author(s):  
Yamin Luo ◽  
Peng Wu ◽  
Jing Hu ◽  
Shaopan He ◽  
Xiandeng Hou ◽  
...  

Biosensors ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 402
Author(s):  
Samuel Husin Surya Mandala ◽  
Tai-Jan Liu ◽  
Chiung-Mei Chen ◽  
Kuo-Kang Liu ◽  
Mochamad Januar ◽  
...  

Parkinson’s disease (PD) is an acute and progressive neurodegenerative disorder, and diagnosis of the disease at its earliest stage is of paramount importance to improve the life expectancy of patients. α-Synuclein (α-syn) is a potential biomarker for the early diagnosis of PD, and there is a great need to develop a biosensing platform that precisely detects α-syn in human body fluids. Herein, we developed a surface plasmon resonance (SPR) biosensor based on the label-free iron oxide nanoparticles (Fe3O4 NPs) and paired antibody for the highly sensitive and selective detection of α-syn in serum samples. The sensitivity of the SPR platform is enhanced significantly by directly depositing Fe3O4 NPs on the Au surface at a high density to increase the decay length of the evanescent field on the Au film. Moreover, the utilization of rabbit-type monoclonal antibody (α-syn-RmAb) immobilized on Au films allows the SPR platform to have a high affinity-selectivity binding performance compared to mouse-type monoclonal antibodies as a common bioreceptor for capturing α-syn molecules. As a result, the current platform has a detection limit of 5.6 fg/mL, which is 20,000-fold lower than that of commercial ELISA. The improved sensor chip can also be easily regenerated to repeat the α-syn measurement with the same sensitivity. Furthermore, the SPR sensor was applied to the direct analysis of α-syn in serum samples. By using a format of paired α-syn-RmAb, the SPR sensor provides a recovery rate in the range from 94.5% to 104.3% to detect the α-syn in diluted serum samples precisely. This work demonstrates a highly sensitive and selective quantification approach to detect α-syn in human biofluids and paves the way for the future development in the early diagnosis of PD.


2017 ◽  
Vol 9 (18) ◽  
pp. 2710-2714 ◽  
Author(s):  
Qiyong Cai ◽  
Jia Ge ◽  
Huihui Xu ◽  
Lin Zhang ◽  
Yalei Hu ◽  
...  

A sensitive fluorescence method for ATP detection was developed based on Exo I and a multifunctional oligonucleotide, which holds the ability of synthesizing fluorescent copper nanoparticles and recognizing ATP.


Sign in / Sign up

Export Citation Format

Share Document