Elongation of magnetic relaxation times in a single-molecule magnet through intermetallic interactions: a clamshell-type dinuclear terbium(iii)-phthalocynaninato quadruple-decker complex

2017 ◽  
Vol 53 (61) ◽  
pp. 8561-8564 ◽  
Author(s):  
Yoji Horii ◽  
Keiichi Katoh ◽  
Brian K. Breedlove ◽  
Masahiro Yamashita

Clamshell-type terbium(iii)-phthalocyaninato quadruple-decker complex was synthesized. Magnetic measurements revealed that Tb–Tb interactions caused an increase in the magnetic relaxation time.

Inorganics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 51
Author(s):  
Lin Miao ◽  
Mei-Jiao Liu ◽  
Man-Man Ding ◽  
Yi-Quan Zhang ◽  
Hui-Zhong Kou

The complexes of lanthanide metals, especially dysprosium, can generally exhibit excellent magnetic properties. By means of modifying ligands, dual functions or even multi-functions can be achieved. Here, we synthesized an eight-coordinate Dy(III) complex 1, [Dy(HL-o)2(MeOH)2](ClO4)3·4.5MeOH, which is single-molecule magnet (SMM), and the introduction of the rhodamine 6G chromophore in the ring-opened ligand HL-o realizes ligand-centered fluorescence in addition to SMM. Magnetic measurements and ab initio calculations indicate that the magnetic relaxation for complex 1 should be due to the Raman relaxation process. Studies on magneto-structural correlationship of the rhodamine salicylaldehyde hydrazone Dy(III) complexes show that the calculated energy of the first Kramers Doublet (EKD1) is basically related to the Ophenoxy-Dy-Ophenoxy bond angle, i.e., the larger Ophenoxy-Dy-Ophenoxy bond angle corresponds to a larger EKD1.


2021 ◽  
Vol 7 (2) ◽  
pp. 24
Author(s):  
Konstantin Martyanov ◽  
Jessica Flores Gonzalez ◽  
Sergey Norkov ◽  
Bertrand Lefeuvre ◽  
Vincent Dorcet ◽  
...  

The coordination reaction of the [Dy(hfac)3(H2O)2] units (hfac− = 1,1,1,5,5,5-hexafluoroacetylacetonate) with the two quinone-based derivatives 4,7-di-tert-butyl-2-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)benzo[d][1,3]dithiole-5,6-dione (L1) and 7,8-dithiabicyclo[4.2.0]octa-1,5-diene-3,4-dione,2,5bis(1,1-dimethylethyl) (L2) led respectively to the complexes [Dy(hfac)3(H2O)(L1)] (1) and [Dy(hfac)3(H2O) (L2)]⋅(C6H14)(CH2Cl2) (2)⋅(C6H14)(CH2Cl2). X-ray structures on single crystal of 1 and 2⋅(C6H14)(CH2Cl2) revealed the coordination of the DyIII on the bischelating oxygenated quinone site and the formation of dimeric species through hydrogen bonds. Ac magnetic measurements highlighted field-induced single-molecule magnet behavior with magnetic relaxation through a Raman process.


2017 ◽  
Vol 4 (8) ◽  
pp. 1311-1318 ◽  
Author(s):  
Long-Fei Wang ◽  
Jiang-Zhen Qiu ◽  
Yan-Cong Chen ◽  
Jun-Liang Liu ◽  
Quan-Wen Li ◽  
...  

The photochemical [2 + 2] reaction on a mononuclear Dy(iii) single-molecule magnet leads to the higher energy barrier after UV irradiation, along with the shorter magnetic relaxation time that is due to the acceleration of Raman process at low temperatures.


2021 ◽  
Vol 7 (11) ◽  
pp. 150
Author(s):  
Carlo Andrea Mattei ◽  
Bertrand Lefeuvre ◽  
Vincent Dorcet ◽  
Gilles Argouarch ◽  
Olivier Cador ◽  
...  

The coordination reaction of the [Dy(hfac)3(H2O)2] units (hfac− = 1,1,1,5,5,5-hexafluoroacetylacetonate) with the [8′-(Diphenoxylphosphinyl)[1,1′-binaphthalen]-8-yl]diphenoxylphosphine oxide ligand (L) followed by a crystallisation in a 1:3 CH2Cl2:n-hexane solvent mixture led to the isolation of a new polymorph of formula [(Dy(hfac)3((S)-L))3]n (1). The X-ray structure on single crystal of 1 revealed the formation of a mono-dimensional coordination polymer with three crystallographically independent DyIII centres, which crystallised in the polar chiral P21 space group. Ac magnetic measurements highlighted single-molecule magnet behaviour under both zero and 1000 Oe applied magnetic field with magnetic relaxation through quantum tunneling of the magnetisation (QTM, zero field only) and Raman processes. Despite the three crystallographically independent DyIII centres adopting a distorted D4d coordination environment, a single slow magnetic relaxation contribution was observed at a slower rate than its previously studied [(Dy(hfac)3((S)-L))]n (2) polymorph.


2018 ◽  
Author(s):  
Marcus J. Giansiracusa ◽  
Andreas Kostopoulos ◽  
George F. S. Whitehead ◽  
David Collison ◽  
Floriana Tuna ◽  
...  

We report a six coordinate DyIII single-molecule magnet<br>(SMM) with an energy barrier of 1110 K for thermal relaxation of<br>magnetization. The sample shows no retention of magnetization<br>even at 2 K and this led us to find a good correlation between the<br>blocking temperature and the Raman relaxation regime for SMMs.<br>The key parameter is the relaxation time (𝜏<sub>switch</sub>) at the point where<br>the Raman relaxation mechanism becomes more important than<br>Orbach.


Author(s):  
Matilde Fondo ◽  
Julio Corredoira-Vázquez ◽  
Ana M. Garcia-Deibe ◽  
Jesus Sanmartin Matalobos ◽  
Silvia Gómez-Coca ◽  
...  

Dinuclear [M(H3L1,2,4)]2 (M = Dy, Dy2; M = Ho, Ho2) complexes were isolated from an heptadentate aminophenol ligand. The crystal structures of Dy2·2THF, and the pyridine adducts Dy2·2Py and Ho2·2Py,...


2014 ◽  
Vol 67 (11) ◽  
pp. 1542 ◽  
Author(s):  
Michele Vonci ◽  
Colette Boskovic

Polyoxometalates are robust and versatile multidentate oxygen-donor ligands, eminently suitable for coordination to trivalent lanthanoid ions. To date, 10 very different structural families of such complexes have been found to exhibit slow magnetic relaxation due to single-molecule magnet (SMM) behaviour associated with the lanthanoid ions. These families encompass complexes with between one and four of the later lanthanoid ions: Tb, Dy, Ho, Er, and Yb. The lanthanoid coordination numbers vary between six and eleven and a range of coordination geometries are evident. The highest energy barrier to magnetisation reversal measured to date for a lanthanoid–polyoxometalate SMM is Ueff/kB = 73 K for the heterodinuclear Dy–Eu compound (Bu4N)8H4[DyEu(OH)2(γ-SiW10O36)2].


2019 ◽  
Vol 48 (27) ◽  
pp. 10011-10022 ◽  
Author(s):  
Hui-Sheng Wang ◽  
Cheng-Ling Yin ◽  
Zhao-Bo Hu ◽  
Yong Chen ◽  
Zhi-Quan Pan ◽  
...  

Two [MIII2DyIII2] complexes (M = Fe for 1 and Co for 2) with mixed organic ligands were obtained. Complex 2 exhibits single molecule magnet behavior with Ueff = 64.0(9) K.


2019 ◽  
Vol 43 (33) ◽  
pp. 12941-12949 ◽  
Author(s):  
Wen-Min Wang ◽  
Li Zhang ◽  
Xian-Zhen Li ◽  
Li-Yuan He ◽  
Xin-Xin Wang ◽  
...  

A family LnIII4 clusters were successfully synthesized and structurally characterized. Magnetic studies show that Gd4 cluster displays magnetic refrigeration, while Dy4 cluster demonstrates two distinct slow magnetic relaxation processes.


2012 ◽  
Vol 134 (24) ◽  
pp. 9840-9843 ◽  
Author(s):  
Rasmus Westerström ◽  
Jan Dreiser ◽  
Cinthia Piamonteze ◽  
Matthias Muntwiler ◽  
Stephen Weyeneth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document