scholarly journals Counterintuitive Single-Molecule Magnet Behaviour in Two Polymorphs of One-Dimensional Compounds Involving Chiral BINOL-Derived Bisphosphate Ligands

2021 ◽  
Vol 7 (11) ◽  
pp. 150
Author(s):  
Carlo Andrea Mattei ◽  
Bertrand Lefeuvre ◽  
Vincent Dorcet ◽  
Gilles Argouarch ◽  
Olivier Cador ◽  
...  

The coordination reaction of the [Dy(hfac)3(H2O)2] units (hfac− = 1,1,1,5,5,5-hexafluoroacetylacetonate) with the [8′-(Diphenoxylphosphinyl)[1,1′-binaphthalen]-8-yl]diphenoxylphosphine oxide ligand (L) followed by a crystallisation in a 1:3 CH2Cl2:n-hexane solvent mixture led to the isolation of a new polymorph of formula [(Dy(hfac)3((S)-L))3]n (1). The X-ray structure on single crystal of 1 revealed the formation of a mono-dimensional coordination polymer with three crystallographically independent DyIII centres, which crystallised in the polar chiral P21 space group. Ac magnetic measurements highlighted single-molecule magnet behaviour under both zero and 1000 Oe applied magnetic field with magnetic relaxation through quantum tunneling of the magnetisation (QTM, zero field only) and Raman processes. Despite the three crystallographically independent DyIII centres adopting a distorted D4d coordination environment, a single slow magnetic relaxation contribution was observed at a slower rate than its previously studied [(Dy(hfac)3((S)-L))]n (2) polymorph.

2014 ◽  
Vol 50 (71) ◽  
pp. 10262-10264 ◽  
Author(s):  
Joana T. Coutinho ◽  
Maria A. Antunes ◽  
Laura C. J. Pereira ◽  
Joaquim Marçalo ◽  
Manuel Almeida

Single-molecule-magnet behaviour in [U(TpMe2)2(bipy˙)], a U(iii) complex with a radical bipyridine ligand, having magnetic contributions from both the metal and the ligand.


2015 ◽  
Vol 44 (48) ◽  
pp. 20834-20838 ◽  
Author(s):  
Xing-Cai Huang ◽  
Ming Zhang ◽  
Dayu Wu ◽  
Dong Shao ◽  
Xin-Hua Zhao ◽  
...  

Two one-dimensional coordination polymers with pentagonal bipyramidal DyIII centres show slow magnetic relaxation featuring single molecule magnet behavior.


2021 ◽  
Vol 7 (2) ◽  
pp. 24
Author(s):  
Konstantin Martyanov ◽  
Jessica Flores Gonzalez ◽  
Sergey Norkov ◽  
Bertrand Lefeuvre ◽  
Vincent Dorcet ◽  
...  

The coordination reaction of the [Dy(hfac)3(H2O)2] units (hfac− = 1,1,1,5,5,5-hexafluoroacetylacetonate) with the two quinone-based derivatives 4,7-di-tert-butyl-2-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)benzo[d][1,3]dithiole-5,6-dione (L1) and 7,8-dithiabicyclo[4.2.0]octa-1,5-diene-3,4-dione,2,5bis(1,1-dimethylethyl) (L2) led respectively to the complexes [Dy(hfac)3(H2O)(L1)] (1) and [Dy(hfac)3(H2O) (L2)]⋅(C6H14)(CH2Cl2) (2)⋅(C6H14)(CH2Cl2). X-ray structures on single crystal of 1 and 2⋅(C6H14)(CH2Cl2) revealed the coordination of the DyIII on the bischelating oxygenated quinone site and the formation of dimeric species through hydrogen bonds. Ac magnetic measurements highlighted field-induced single-molecule magnet behavior with magnetic relaxation through a Raman process.


Author(s):  
Matilde Fondo ◽  
Julio Corredoira-Vázquez ◽  
Ana M. Garcia-Deibe ◽  
Jesus Sanmartin Matalobos ◽  
Silvia Gómez-Coca ◽  
...  

Dinuclear [M(H3L1,2,4)]2 (M = Dy, Dy2; M = Ho, Ho2) complexes were isolated from an heptadentate aminophenol ligand. The crystal structures of Dy2·2THF, and the pyridine adducts Dy2·2Py and Ho2·2Py,...


Inorganics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 51
Author(s):  
Lin Miao ◽  
Mei-Jiao Liu ◽  
Man-Man Ding ◽  
Yi-Quan Zhang ◽  
Hui-Zhong Kou

The complexes of lanthanide metals, especially dysprosium, can generally exhibit excellent magnetic properties. By means of modifying ligands, dual functions or even multi-functions can be achieved. Here, we synthesized an eight-coordinate Dy(III) complex 1, [Dy(HL-o)2(MeOH)2](ClO4)3·4.5MeOH, which is single-molecule magnet (SMM), and the introduction of the rhodamine 6G chromophore in the ring-opened ligand HL-o realizes ligand-centered fluorescence in addition to SMM. Magnetic measurements and ab initio calculations indicate that the magnetic relaxation for complex 1 should be due to the Raman relaxation process. Studies on magneto-structural correlationship of the rhodamine salicylaldehyde hydrazone Dy(III) complexes show that the calculated energy of the first Kramers Doublet (EKD1) is basically related to the Ophenoxy-Dy-Ophenoxy bond angle, i.e., the larger Ophenoxy-Dy-Ophenoxy bond angle corresponds to a larger EKD1.


2014 ◽  
Vol 67 (11) ◽  
pp. 1542 ◽  
Author(s):  
Michele Vonci ◽  
Colette Boskovic

Polyoxometalates are robust and versatile multidentate oxygen-donor ligands, eminently suitable for coordination to trivalent lanthanoid ions. To date, 10 very different structural families of such complexes have been found to exhibit slow magnetic relaxation due to single-molecule magnet (SMM) behaviour associated with the lanthanoid ions. These families encompass complexes with between one and four of the later lanthanoid ions: Tb, Dy, Ho, Er, and Yb. The lanthanoid coordination numbers vary between six and eleven and a range of coordination geometries are evident. The highest energy barrier to magnetisation reversal measured to date for a lanthanoid–polyoxometalate SMM is Ueff/kB = 73 K for the heterodinuclear Dy–Eu compound (Bu4N)8H4[DyEu(OH)2(γ-SiW10O36)2].


2019 ◽  
Vol 43 (33) ◽  
pp. 12941-12949 ◽  
Author(s):  
Wen-Min Wang ◽  
Li Zhang ◽  
Xian-Zhen Li ◽  
Li-Yuan He ◽  
Xin-Xin Wang ◽  
...  

A family LnIII4 clusters were successfully synthesized and structurally characterized. Magnetic studies show that Gd4 cluster displays magnetic refrigeration, while Dy4 cluster demonstrates two distinct slow magnetic relaxation processes.


2018 ◽  
Vol 47 (46) ◽  
pp. 16596-16602 ◽  
Author(s):  
Lei Chen ◽  
Jingbo Song ◽  
Wen Zhao ◽  
Gangji Yi ◽  
Zhikuan Zhou ◽  
...  

A mononuclear cobalt(ii) complex with square pyramidal geometry displays a spin transition with a small hysteresis loop and slow magnetic relaxation.


1999 ◽  
Vol 121 (22) ◽  
pp. 5302-5310 ◽  
Author(s):  
A. L. Barra ◽  
A. Caneschi ◽  
A. Cornia ◽  
F. Fabrizi de Biani ◽  
D. Gatteschi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document